Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > trubifal | GIF version |
Description: A ↔ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
Ref | Expression |
---|---|
trubifal | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 386 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ((⊤ → ⊥) ∧ (⊥ → ⊤))) | |
2 | truimfal 1405 | . . 3 ⊢ ((⊤ → ⊥) ↔ ⊥) | |
3 | falimtru 1406 | . . 3 ⊢ ((⊥ → ⊤) ↔ ⊤) | |
4 | 2, 3 | anbi12i 457 | . 2 ⊢ (((⊤ → ⊥) ∧ (⊥ → ⊤)) ↔ (⊥ ∧ ⊤)) |
5 | falantru 1398 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
6 | 1, 4, 5 | 3bitri 205 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ⊤wtru 1349 ⊥wfal 1353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: falbitru 1412 |
Copyright terms: Public domain | W3C validator |