| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > trubifal | GIF version | ||
| Description: A ↔ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
| Ref | Expression |
|---|---|
| trubifal | ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi2 388 | . 2 ⊢ ((⊤ ↔ ⊥) ↔ ((⊤ → ⊥) ∧ (⊥ → ⊤))) | |
| 2 | truimfal 1421 | . . 3 ⊢ ((⊤ → ⊥) ↔ ⊥) | |
| 3 | falimtru 1422 | . . 3 ⊢ ((⊥ → ⊤) ↔ ⊤) | |
| 4 | 2, 3 | anbi12i 460 | . 2 ⊢ (((⊤ → ⊥) ∧ (⊥ → ⊤)) ↔ (⊥ ∧ ⊤)) |
| 5 | falantru 1414 | . 2 ⊢ ((⊥ ∧ ⊤) ↔ ⊥) | |
| 6 | 1, 4, 5 | 3bitri 206 | 1 ⊢ ((⊤ ↔ ⊥) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ⊤wtru 1365 ⊥wfal 1369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: falbitru 1428 |
| Copyright terms: Public domain | W3C validator |