ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  falimtru GIF version

Theorem falimtru 1357
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falimtru ((⊥ → ⊤) ↔ ⊤)

Proof of Theorem falimtru
StepHypRef Expression
1 falim 1313 . 2 (⊥ → ⊤)
21bitru 1311 1 ((⊥ → ⊤) ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wtru 1300  wfal 1304
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-fal 1305
This theorem is referenced by:  trubifal  1362
  Copyright terms: Public domain W3C validator