Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > truimfal | GIF version |
Description: A → identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
Ref | Expression |
---|---|
truimfal | ⊢ ((⊤ → ⊥) ↔ ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1339 | . . 3 ⊢ ⊤ | |
2 | 1 | a1bi 242 | . 2 ⊢ (⊥ ↔ (⊤ → ⊥)) |
3 | 2 | bicomi 131 | 1 ⊢ ((⊤ → ⊥) ↔ ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ⊤wtru 1336 ⊥wfal 1340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-tru 1338 |
This theorem is referenced by: trubifal 1398 |
Copyright terms: Public domain | W3C validator |