ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truimfal GIF version

Theorem truimfal 1405
Description: A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
truimfal ((⊤ → ⊥) ↔ ⊥)

Proof of Theorem truimfal
StepHypRef Expression
1 tru 1352 . . 3
21a1bi 242 . 2 (⊥ ↔ (⊤ → ⊥))
32bicomi 131 1 ((⊤ → ⊥) ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wtru 1349  wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by:  trubifal  1411
  Copyright terms: Public domain W3C validator