ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitru GIF version

Theorem bitru 1360
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1352 . 2
31, 22th 173 1 (𝜑 ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 104  wtru 1349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-tru 1351
This theorem is referenced by:  truorfal  1401  falortru  1402  truimtru  1404  falimtru  1406  falimfal  1407  notfal  1409  trubitru  1410  falbifal  1413
  Copyright terms: Public domain W3C validator