ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bitru GIF version

Theorem bitru 1407
Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
bitru.1 𝜑
Assertion
Ref Expression
bitru (𝜑 ↔ ⊤)

Proof of Theorem bitru
StepHypRef Expression
1 bitru.1 . 2 𝜑
2 tru 1399 . 2
31, 22th 174 1 (𝜑 ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  wb 105  wtru 1396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-tru 1398
This theorem is referenced by:  truorfal  1448  falortru  1449  truimtru  1451  falimtru  1453  falimfal  1454  notfal  1456  trubitru  1457  falbifal  1460
  Copyright terms: Public domain W3C validator