| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bitru | GIF version | ||
| Description: A theorem is equivalent to truth. (Contributed by Mario Carneiro, 9-May-2015.) |
| Ref | Expression |
|---|---|
| bitru.1 | ⊢ 𝜑 |
| Ref | Expression |
|---|---|
| bitru | ⊢ (𝜑 ↔ ⊤) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitru.1 | . 2 ⊢ 𝜑 | |
| 2 | tru 1368 | . 2 ⊢ ⊤ | |
| 3 | 1, 2 | 2th 174 | 1 ⊢ (𝜑 ↔ ⊤) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ⊤wtru 1365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 |
| This theorem is referenced by: truorfal 1417 falortru 1418 truimtru 1420 falimtru 1422 falimfal 1423 notfal 1425 trubitru 1426 falbifal 1429 |
| Copyright terms: Public domain | W3C validator |