| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > im2anan9r | GIF version | ||
| Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.) | 
| Ref | Expression | 
|---|---|
| im2an9.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) | 
| im2an9.2 | ⊢ (𝜃 → (𝜏 → 𝜂)) | 
| Ref | Expression | 
|---|---|
| im2anan9r | ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | im2an9.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | im2an9.2 | . . 3 ⊢ (𝜃 → (𝜏 → 𝜂)) | |
| 3 | 1, 2 | im2anan9 598 | . 2 ⊢ ((𝜑 ∧ 𝜃) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| 4 | 3 | ancoms 268 | 1 ⊢ ((𝜃 ∧ 𝜑) → ((𝜓 ∧ 𝜏) → (𝜒 ∧ 𝜂))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: lbreu 8972 | 
| Copyright terms: Public domain | W3C validator |