ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbreu GIF version

Theorem lbreu 9088
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem lbreu
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 4086 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
21rspcv 2903 . . . . . . . 8 (𝑤𝑆 → (∀𝑦𝑆 𝑥𝑦𝑥𝑤))
3 breq2 4086 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
43rspcv 2903 . . . . . . . 8 (𝑥𝑆 → (∀𝑦𝑆 𝑤𝑦𝑤𝑥))
52, 4im2anan9r 601 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑥𝑤𝑤𝑥)))
6 ssel 3218 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑥𝑆𝑥 ∈ ℝ))
7 ssel 3218 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑤𝑆𝑤 ∈ ℝ))
86, 7anim12d 335 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)))
98impcom 125 . . . . . . . . . 10 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))
10 letri3 8223 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
119, 10syl 14 . . . . . . . . 9 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
1211exbiri 382 . . . . . . . 8 ((𝑥𝑆𝑤𝑆) → (𝑆 ⊆ ℝ → ((𝑥𝑤𝑤𝑥) → 𝑥 = 𝑤)))
1312com23 78 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((𝑥𝑤𝑤𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
145, 13syld 45 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
1514com3r 79 . . . . 5 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1615ralrimivv 2611 . . . 4 (𝑆 ⊆ ℝ → ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤))
1716anim2i 342 . . 3 ((∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑆 ⊆ ℝ) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1817ancoms 268 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
19 breq1 4085 . . . 4 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
2019ralbidv 2530 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 𝑤𝑦))
2120reu4 2997 . 2 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
2218, 21sylibr 134 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  wral 2508  wrex 2509  ∃!wreu 2510  wss 3197   class class class wbr 4082  cr 7994  cle 8178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-pre-ltirr 8107  ax-pre-apti 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183
This theorem is referenced by:  lbcl  9089  lble  9090
  Copyright terms: Public domain W3C validator