Step | Hyp | Ref
| Expression |
1 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑦 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑥 ≤ 𝑤)) |
2 | 1 | rspcv 2830 |
. . . . . . . 8
⊢ (𝑤 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 → 𝑥 ≤ 𝑤)) |
3 | | breq2 3993 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑤 ≤ 𝑦 ↔ 𝑤 ≤ 𝑥)) |
4 | 3 | rspcv 2830 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝑆 → (∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦 → 𝑤 ≤ 𝑥)) |
5 | 2, 4 | im2anan9r 594 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
6 | | ssel 3141 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ ℝ → (𝑥 ∈ 𝑆 → 𝑥 ∈ ℝ)) |
7 | | ssel 3141 |
. . . . . . . . . . . 12
⊢ (𝑆 ⊆ ℝ → (𝑤 ∈ 𝑆 → 𝑤 ∈ ℝ)) |
8 | 6, 7 | anim12d 333 |
. . . . . . . . . . 11
⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))) |
9 | 8 | impcom 124 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)) |
10 | | letri3 8000 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
11 | 9, 10 | syl 14 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥))) |
12 | 11 | exbiri 380 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → (𝑆 ⊆ ℝ → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → 𝑥 = 𝑤))) |
13 | 12 | com23 78 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((𝑥 ≤ 𝑤 ∧ 𝑤 ≤ 𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
14 | 5, 13 | syld 45 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤))) |
15 | 14 | com3r 79 |
. . . . 5
⊢ (𝑆 ⊆ ℝ → ((𝑥 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆) → ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
16 | 15 | ralrimivv 2551 |
. . . 4
⊢ (𝑆 ⊆ ℝ →
∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤)) |
17 | 16 | anim2i 340 |
. . 3
⊢
((∃𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ 𝑆 ⊆ ℝ) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
18 | 17 | ancoms 266 |
. 2
⊢ ((𝑆 ⊆ ℝ ∧
∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
19 | | breq1 3992 |
. . . 4
⊢ (𝑥 = 𝑤 → (𝑥 ≤ 𝑦 ↔ 𝑤 ≤ 𝑦)) |
20 | 19 | ralbidv 2470 |
. . 3
⊢ (𝑥 = 𝑤 → (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦)) |
21 | 20 | reu4 2924 |
. 2
⊢
(∃!𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ↔ (∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑥 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑦 ∈ 𝑆 𝑤 ≤ 𝑦) → 𝑥 = 𝑤))) |
22 | 18, 21 | sylibr 133 |
1
⊢ ((𝑆 ⊆ ℝ ∧
∃𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) → ∃!𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦) |