ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lbreu GIF version

Theorem lbreu 8660
Description: If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
Assertion
Ref Expression
lbreu ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem lbreu
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 breq2 3901 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑥𝑦𝑥𝑤))
21rspcv 2757 . . . . . . . 8 (𝑤𝑆 → (∀𝑦𝑆 𝑥𝑦𝑥𝑤))
3 breq2 3901 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑤𝑦𝑤𝑥))
43rspcv 2757 . . . . . . . 8 (𝑥𝑆 → (∀𝑦𝑆 𝑤𝑦𝑤𝑥))
52, 4im2anan9r 571 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑥𝑤𝑤𝑥)))
6 ssel 3059 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑥𝑆𝑥 ∈ ℝ))
7 ssel 3059 . . . . . . . . . . . 12 (𝑆 ⊆ ℝ → (𝑤𝑆𝑤 ∈ ℝ))
86, 7anim12d 331 . . . . . . . . . . 11 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ)))
98impcom 124 . . . . . . . . . 10 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ))
10 letri3 7809 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑤 ∈ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
119, 10syl 14 . . . . . . . . 9 (((𝑥𝑆𝑤𝑆) ∧ 𝑆 ⊆ ℝ) → (𝑥 = 𝑤 ↔ (𝑥𝑤𝑤𝑥)))
1211exbiri 377 . . . . . . . 8 ((𝑥𝑆𝑤𝑆) → (𝑆 ⊆ ℝ → ((𝑥𝑤𝑤𝑥) → 𝑥 = 𝑤)))
1312com23 78 . . . . . . 7 ((𝑥𝑆𝑤𝑆) → ((𝑥𝑤𝑤𝑥) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
145, 13syld 45 . . . . . 6 ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → (𝑆 ⊆ ℝ → 𝑥 = 𝑤)))
1514com3r 79 . . . . 5 (𝑆 ⊆ ℝ → ((𝑥𝑆𝑤𝑆) → ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1615ralrimivv 2488 . . . 4 (𝑆 ⊆ ℝ → ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤))
1716anim2i 337 . . 3 ((∃𝑥𝑆𝑦𝑆 𝑥𝑦𝑆 ⊆ ℝ) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
1817ancoms 266 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
19 breq1 3900 . . . 4 (𝑥 = 𝑤 → (𝑥𝑦𝑤𝑦))
2019ralbidv 2412 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑆 𝑥𝑦 ↔ ∀𝑦𝑆 𝑤𝑦))
2120reu4 2849 . 2 (∃!𝑥𝑆𝑦𝑆 𝑥𝑦 ↔ (∃𝑥𝑆𝑦𝑆 𝑥𝑦 ∧ ∀𝑥𝑆𝑤𝑆 ((∀𝑦𝑆 𝑥𝑦 ∧ ∀𝑦𝑆 𝑤𝑦) → 𝑥 = 𝑤)))
2218, 21sylibr 133 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → ∃!𝑥𝑆𝑦𝑆 𝑥𝑦)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 1463  wral 2391  wrex 2392  ∃!wreu 2393  wss 3039   class class class wbr 3897  cr 7583  cle 7765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-pre-ltirr 7696  ax-pre-apti 7699
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-br 3898  df-opab 3958  df-xp 4513  df-cnv 4515  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770
This theorem is referenced by:  lbcl  8661  lble  8662
  Copyright terms: Public domain W3C validator