ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  im2anan9 GIF version

Theorem im2anan9 598
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996.)
Hypotheses
Ref Expression
im2an9.1 (𝜑 → (𝜓𝜒))
im2an9.2 (𝜃 → (𝜏𝜂))
Assertion
Ref Expression
im2anan9 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))

Proof of Theorem im2anan9
StepHypRef Expression
1 im2an9.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 276 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 im2an9.2 . . 3 (𝜃 → (𝜏𝜂))
43adantl 277 . 2 ((𝜑𝜃) → (𝜏𝜂))
52, 4anim12d 335 1 ((𝜑𝜃) → ((𝜓𝜏) → (𝜒𝜂)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  im2anan9r  599  trin  4113  xpss12  4735  f1oun  5483  poxp  6235  brecop  6627  enq0sym  7433  genpdisj  7524  tgcl  13649  txlm  13864
  Copyright terms: Public domain W3C validator