Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imdistanri | GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
imdistanri.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistanri | ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistanri.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | com12 30 | . 2 ⊢ (𝜓 → (𝜑 → 𝜒)) |
3 | 2 | impac 379 | 1 ⊢ ((𝜓 ∧ 𝜑) → (𝜒 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |