ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impac GIF version

Theorem impac 379
Description: Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
Hypothesis
Ref Expression
impac.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
impac ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem impac
StepHypRef Expression
1 impac.1 . . 3 (𝜑 → (𝜓𝜒))
21ancrd 324 . 2 (𝜑 → (𝜓 → (𝜒𝜓)))
32imp 123 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  imdistanri  444  f1elima  5752
  Copyright terms: Public domain W3C validator