ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 435
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 323 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 123 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  xoranor  1320  nfan1  1508  sbcof2  1745  difin  3252  difrab  3289  opthreg  4400  wessep  4421  fvelimab  5395  elfvmptrab  5434  dffo4  5486  dffo5  5487  ltaddpr  7253  recgt1i  8456  elnnnn0c  8816  elnnz1  8871  recnz  8938  eluz2b2  9189  elfzp12  9662  cos01gt0  11202  oddnn02np1  11307
  Copyright terms: Public domain W3C validator