| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistani | GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: syldanl 449 xoranor 1419 nfan1 1610 sbcof2 1856 difin 3441 difrab 3478 opthreg 4648 wessep 4670 fvelimab 5692 elfvmptrab 5732 dffo4 5785 dffo5 5786 ltaddpr 7792 recgt1i 9053 elnnnn0c 9422 elnnz1 9477 recnz 9548 eluz2b2 9806 elfzp12 10303 pfxsuff1eqwrdeq 11239 cos01gt0 12282 oddnn02np1 12399 reumodprminv 12784 sgrpidmndm 13461 elply2 15417 bj-charfundc 16195 |
| Copyright terms: Public domain | W3C validator |