ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1419  nfan1  1610  sbcof2  1856  difin  3441  difrab  3478  opthreg  4645  wessep  4667  fvelimab  5683  elfvmptrab  5723  dffo4  5776  dffo5  5777  ltaddpr  7772  recgt1i  9033  elnnnn0c  9402  elnnz1  9457  recnz  9528  eluz2b2  9786  elfzp12  10283  pfxsuff1eqwrdeq  11217  cos01gt0  12260  oddnn02np1  12377  reumodprminv  12762  sgrpidmndm  13439  elply2  15394  bj-charfundc  16101
  Copyright terms: Public domain W3C validator