ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1388  nfan1  1578  sbcof2  1824  difin  3400  difrab  3437  opthreg  4592  wessep  4614  fvelimab  5617  elfvmptrab  5657  dffo4  5710  dffo5  5711  ltaddpr  7664  recgt1i  8925  elnnnn0c  9294  elnnz1  9349  recnz  9419  eluz2b2  9677  elfzp12  10174  cos01gt0  11928  oddnn02np1  12045  reumodprminv  12422  sgrpidmndm  13061  elply2  14971  bj-charfundc  15454
  Copyright terms: Public domain W3C validator