ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1388  nfan1  1575  sbcof2  1821  difin  3397  difrab  3434  opthreg  4589  wessep  4611  fvelimab  5614  elfvmptrab  5654  dffo4  5707  dffo5  5708  ltaddpr  7659  recgt1i  8919  elnnnn0c  9288  elnnz1  9343  recnz  9413  eluz2b2  9671  elfzp12  10168  cos01gt0  11909  oddnn02np1  12024  reumodprminv  12394  sgrpidmndm  13004  elply2  14914  bj-charfundc  15370
  Copyright terms: Public domain W3C validator