| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistani | GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: syldanl 449 xoranor 1388 nfan1 1578 sbcof2 1824 difin 3401 difrab 3438 opthreg 4593 wessep 4615 fvelimab 5620 elfvmptrab 5660 dffo4 5713 dffo5 5714 ltaddpr 7683 recgt1i 8944 elnnnn0c 9313 elnnz1 9368 recnz 9438 eluz2b2 9696 elfzp12 10193 cos01gt0 11947 oddnn02np1 12064 reumodprminv 12449 sgrpidmndm 13124 elply2 15079 bj-charfundc 15562 |
| Copyright terms: Public domain | W3C validator |