ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1388  nfan1  1578  sbcof2  1824  difin  3401  difrab  3438  opthreg  4593  wessep  4615  fvelimab  5620  elfvmptrab  5660  dffo4  5713  dffo5  5714  ltaddpr  7683  recgt1i  8944  elnnnn0c  9313  elnnz1  9368  recnz  9438  eluz2b2  9696  elfzp12  10193  cos01gt0  11947  oddnn02np1  12064  reumodprminv  12449  sgrpidmndm  13124  elply2  15079  bj-charfundc  15562
  Copyright terms: Public domain W3C validator