ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 442
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 327 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 123 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  xoranor  1367  nfan1  1552  sbcof2  1798  difin  3358  difrab  3395  opthreg  4532  wessep  4554  fvelimab  5541  elfvmptrab  5580  dffo4  5632  dffo5  5633  ltaddpr  7534  recgt1i  8789  elnnnn0c  9155  elnnz1  9210  recnz  9280  eluz2b2  9537  elfzp12  10030  cos01gt0  11699  oddnn02np1  11813  reumodprminv  12181  bj-charfundc  13650
  Copyright terms: Public domain W3C validator