![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imdistani | GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem is referenced by: syldanl 449 xoranor 1377 nfan1 1564 sbcof2 1810 difin 3373 difrab 3410 opthreg 4556 wessep 4578 fvelimab 5573 elfvmptrab 5612 dffo4 5665 dffo5 5666 ltaddpr 7596 recgt1i 8855 elnnnn0c 9221 elnnz1 9276 recnz 9346 eluz2b2 9603 elfzp12 10099 cos01gt0 11770 oddnn02np1 11885 reumodprminv 12253 sgrpidmndm 12821 bj-charfundc 14563 |
Copyright terms: Public domain | W3C validator |