ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1377  nfan1  1564  sbcof2  1810  difin  3373  difrab  3410  opthreg  4556  wessep  4578  fvelimab  5573  elfvmptrab  5612  dffo4  5665  dffo5  5666  ltaddpr  7596  recgt1i  8855  elnnnn0c  9221  elnnz1  9276  recnz  9346  eluz2b2  9603  elfzp12  10099  cos01gt0  11770  oddnn02np1  11885  reumodprminv  12253  sgrpidmndm  12821  bj-charfundc  14563
  Copyright terms: Public domain W3C validator