| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistani | GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: syldanl 449 xoranor 1397 nfan1 1588 sbcof2 1834 difin 3412 difrab 3449 opthreg 4609 wessep 4631 fvelimab 5645 elfvmptrab 5685 dffo4 5738 dffo5 5739 ltaddpr 7723 recgt1i 8984 elnnnn0c 9353 elnnz1 9408 recnz 9479 eluz2b2 9737 elfzp12 10234 pfxsuff1eqwrdeq 11164 cos01gt0 12124 oddnn02np1 12241 reumodprminv 12626 sgrpidmndm 13302 elply2 15257 bj-charfundc 15858 |
| Copyright terms: Public domain | W3C validator |