| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistani | GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: syldanl 449 xoranor 1419 nfan1 1610 sbcof2 1856 difin 3441 difrab 3478 opthreg 4645 wessep 4667 fvelimab 5683 elfvmptrab 5723 dffo4 5776 dffo5 5777 ltaddpr 7772 recgt1i 9033 elnnnn0c 9402 elnnz1 9457 recnz 9528 eluz2b2 9786 elfzp12 10283 pfxsuff1eqwrdeq 11217 cos01gt0 12260 oddnn02np1 12377 reumodprminv 12762 sgrpidmndm 13439 elply2 15394 bj-charfundc 16101 |
| Copyright terms: Public domain | W3C validator |