| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imdistani | GIF version | ||
| Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
| Ref | Expression |
|---|---|
| imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | anc2li 329 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
| 3 | 2 | imp 124 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: syldanl 449 xoranor 1388 nfan1 1578 sbcof2 1824 difin 3400 difrab 3437 opthreg 4592 wessep 4614 fvelimab 5617 elfvmptrab 5657 dffo4 5710 dffo5 5711 ltaddpr 7664 recgt1i 8925 elnnnn0c 9294 elnnz1 9349 recnz 9419 eluz2b2 9677 elfzp12 10174 cos01gt0 11928 oddnn02np1 12045 reumodprminv 12422 sgrpidmndm 13061 elply2 14971 bj-charfundc 15454 |
| Copyright terms: Public domain | W3C validator |