Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imdistani | GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | anc2li 327 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: xoranor 1367 nfan1 1552 sbcof2 1798 difin 3358 difrab 3395 opthreg 4532 wessep 4554 fvelimab 5541 elfvmptrab 5580 dffo4 5632 dffo5 5633 ltaddpr 7534 recgt1i 8789 elnnnn0c 9155 elnnz1 9210 recnz 9280 eluz2b2 9537 elfzp12 10030 cos01gt0 11699 oddnn02np1 11813 reumodprminv 12181 bj-charfundc 13650 |
Copyright terms: Public domain | W3C validator |