ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistani GIF version

Theorem imdistani 445
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
imdistani.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
imdistani ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem imdistani
StepHypRef Expression
1 imdistani.1 . . 3 (𝜑 → (𝜓𝜒))
21anc2li 329 . 2 (𝜑 → (𝜓 → (𝜑𝜒)))
32imp 124 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem is referenced by:  syldanl  449  xoranor  1397  nfan1  1588  sbcof2  1834  difin  3412  difrab  3449  opthreg  4609  wessep  4631  fvelimab  5645  elfvmptrab  5685  dffo4  5738  dffo5  5739  ltaddpr  7723  recgt1i  8984  elnnnn0c  9353  elnnz1  9408  recnz  9479  eluz2b2  9737  elfzp12  10234  pfxsuff1eqwrdeq  11164  cos01gt0  12124  oddnn02np1  12241  reumodprminv  12626  sgrpidmndm  13302  elply2  15257  bj-charfundc  15858
  Copyright terms: Public domain W3C validator