![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imdistani | GIF version |
Description: Distribution of implication with conjunction. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
imdistani.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
imdistani | ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imdistani.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | anc2li 323 | . 2 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
3 | 2 | imp 123 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem is referenced by: xoranor 1320 nfan1 1508 sbcof2 1745 difin 3252 difrab 3289 opthreg 4400 wessep 4421 fvelimab 5395 elfvmptrab 5434 dffo4 5486 dffo5 5487 ltaddpr 7253 recgt1i 8456 elnnnn0c 8816 elnnz1 8871 recnz 8938 eluz2b2 9189 elfzp12 9662 cos01gt0 11202 oddnn02np1 11307 |
Copyright terms: Public domain | W3C validator |