| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imdistand | GIF version | ||
| Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.) | 
| Ref | Expression | 
|---|---|
| imdistand.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| imdistand | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imdistand.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | imdistan 444 | . 2 ⊢ ((𝜓 → (𝜒 → 𝜃)) ↔ ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 122 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → (𝜓 ∧ 𝜃))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 | 
| This theorem is referenced by: imdistanda 448 pm5.32d 450 a2and 558 fconstfvm 5780 lbzbi 9690 | 
| Copyright terms: Public domain | W3C validator |