ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imdistand GIF version

Theorem imdistand 444
Description: Distribution of implication with conjunction (deduction form). (Contributed by NM, 27-Aug-2004.)
Hypothesis
Ref Expression
imdistand.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imdistand (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))

Proof of Theorem imdistand
StepHypRef Expression
1 imdistand.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 imdistan 441 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) → (𝜓𝜃)))
31, 2sylib 121 1 (𝜑 → ((𝜓𝜒) → (𝜓𝜃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  imdistanda  445  pm5.32d  446  a2and  548  fconstfvm  5703  lbzbi  9554
  Copyright terms: Public domain W3C validator