| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imorri | GIF version | ||
| Description: Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| imorri.1 | ⊢ (¬ 𝜑 ∨ 𝜓) |
| Ref | Expression |
|---|---|
| imorri | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imorri.1 | . 2 ⊢ (¬ 𝜑 ∨ 𝜓) | |
| 2 | pm2.21 618 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
| 3 | ax-1 6 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
| 4 | 2, 3 | jaoi 717 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) → (𝜑 → 𝜓)) |
| 5 | 1, 4 | ax-mp 5 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |