![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imorri | GIF version |
Description: Infer implication from disjunction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
imorri.1 | ⊢ (¬ 𝜑 ∨ 𝜓) |
Ref | Expression |
---|---|
imorri | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imorri.1 | . 2 ⊢ (¬ 𝜑 ∨ 𝜓) | |
2 | pm2.21 585 | . . 3 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | ax-1 5 | . . 3 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
4 | 2, 3 | jaoi 674 | . 2 ⊢ ((¬ 𝜑 ∨ 𝜓) → (𝜑 → 𝜓)) |
5 | 1, 4 | ax-mp 7 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 667 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 583 ax-io 668 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |