ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm2.21 GIF version

Theorem pm2.21 620
Description: From a wff and its negation, anything is true. Theorem *2.21 of [WhiteheadRussell] p. 104. Also called the Duns Scotus law. (Contributed by Mario Carneiro, 12-May-2015.)
Assertion
Ref Expression
pm2.21 𝜑 → (𝜑𝜓))

Proof of Theorem pm2.21
StepHypRef Expression
1 ax-in2 618 1 𝜑 → (𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-in2 618
This theorem is referenced by:  pm2.21d  622  pm2.24  624  pm2.24i  626  pm2.21i  649  jarl  662  mtt  689  orel2  731  imorri  754  pm2.42  782  pm2.18dc  860  simplimdc  865  peircedc  919  pm4.82  956  pm5.71dc  967  dedlemb  976  mo2n  2105  exmodc  2128  exmonim  2129  nrexrmo  2753  opthpr  3849  0neqopab  6040  0mnnnnn0  9389  flqeqceilz  10527
  Copyright terms: Public domain W3C validator