![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ancrd | GIF version |
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: impac 381 euan 2098 reupick 3444 prel12 3798 ssrnres 5109 funmo 5270 funssres 5297 dffo4 5707 dffo5 5708 fzospliti 10246 rexuz3 11137 qredeq 12237 prmdvdsfz 12280 |
Copyright terms: Public domain | W3C validator |