| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ancrd | GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
| Ref | Expression |
|---|---|
| ancrd.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| ancrd | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancrd.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | idd 21 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
| 3 | 1, 2 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: impac 381 euan 2101 reupick 3447 prel12 3801 ssrnres 5112 funmo 5273 funssres 5300 dffo4 5710 dffo5 5711 fzospliti 10252 rexuz3 11155 qredeq 12264 prmdvdsfz 12307 |
| Copyright terms: Public domain | W3C validator |