ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ancrd GIF version

Theorem ancrd 326
Description: Deduction conjoining antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.)
Hypothesis
Ref Expression
ancrd.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ancrd (𝜑 → (𝜓 → (𝜒𝜓)))

Proof of Theorem ancrd
StepHypRef Expression
1 ancrd.1 . 2 (𝜑 → (𝜓𝜒))
2 idd 21 . 2 (𝜑 → (𝜓𝜓))
31, 2jcad 307 1 (𝜑 → (𝜓 → (𝜒𝜓)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  impac  381  euan  2111  reupick  3461  prel12  3820  ssrelrn  4883  ssrnres  5139  funmo  5300  funssres  5327  dffo4  5746  dffo5  5747  en2prde  7322  fzospliti  10330  rexuz3  11386  qredeq  12503  prmdvdsfz  12546
  Copyright terms: Public domain W3C validator