| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > impl | GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| impl.1 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Ref | Expression |
|---|---|
| impl | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impl.1 | . . 3 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) | |
| 2 | 1 | expd 258 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem is referenced by: sbc2iedv 3062 csbie2t 3133 foco2 5800 erth 6638 distrlem1prl 7649 distrlem1pru 7650 uz11 9624 elpq 9723 divgcdcoprm0 12269 cncongr1 12271 prmpwdvds 12524 issgrpd 13055 dfgrp3mlem 13230 efltlemlt 15010 |
| Copyright terms: Public domain | W3C validator |