ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impl GIF version

Theorem impl 378
Description: Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.)
Hypothesis
Ref Expression
impl.1 (𝜑 → ((𝜓𝜒) → 𝜃))
Assertion
Ref Expression
impl (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem impl
StepHypRef Expression
1 impl.1 . . 3 (𝜑 → ((𝜓𝜒) → 𝜃))
21expd 256 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp31 254 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by:  sbc2iedv  3027  csbie2t  3097  foco2  5733  erth  6557  distrlem1prl  7544  distrlem1pru  7545  uz11  9509  elpq  9607  divgcdcoprm0  12055  cncongr1  12057  prmpwdvds  12307  efltlemlt  13489
  Copyright terms: Public domain W3C validator