Step | Hyp | Ref
| Expression |
1 | | f1fn 5394 |
. . . 4
⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹 Fn 𝐴) |
2 | | fvelimab 5541 |
. . . 4
⊢ ((𝐹 Fn 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝐹‘𝑋) ∈ (𝐹 “ 𝑌) ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋))) |
3 | 1, 2 | sylan 281 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑌 ⊆ 𝐴) → ((𝐹‘𝑋) ∈ (𝐹 “ 𝑌) ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋))) |
4 | 3 | 3adant2 1006 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝐹‘𝑋) ∈ (𝐹 “ 𝑌) ↔ ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋))) |
5 | | ssel 3135 |
. . . . . . . 8
⊢ (𝑌 ⊆ 𝐴 → (𝑧 ∈ 𝑌 → 𝑧 ∈ 𝐴)) |
6 | 5 | impac 379 |
. . . . . . 7
⊢ ((𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌) → (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌)) |
7 | | f1fveq 5739 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑧 ∈ 𝐴 ∧ 𝑋 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑋) ↔ 𝑧 = 𝑋)) |
8 | 7 | ancom2s 556 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑋) ↔ 𝑧 = 𝑋)) |
9 | 8 | biimpd 143 |
. . . . . . . . . 10
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑧 = 𝑋)) |
10 | 9 | anassrs 398 |
. . . . . . . . 9
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑧 = 𝑋)) |
11 | | eleq1 2228 |
. . . . . . . . . 10
⊢ (𝑧 = 𝑋 → (𝑧 ∈ 𝑌 ↔ 𝑋 ∈ 𝑌)) |
12 | 11 | biimpcd 158 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝑌 → (𝑧 = 𝑋 → 𝑋 ∈ 𝑌)) |
13 | 10, 12 | sylan9 407 |
. . . . . . . 8
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑧 ∈ 𝐴) ∧ 𝑧 ∈ 𝑌) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
14 | 13 | anasss 397 |
. . . . . . 7
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ (𝑧 ∈ 𝐴 ∧ 𝑧 ∈ 𝑌)) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
15 | 6, 14 | sylan2 284 |
. . . . . 6
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ (𝑌 ⊆ 𝐴 ∧ 𝑧 ∈ 𝑌)) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
16 | 15 | anassrs 398 |
. . . . 5
⊢ ((((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ⊆ 𝐴) ∧ 𝑧 ∈ 𝑌) → ((𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
17 | 16 | rexlimdva 2582 |
. . . 4
⊢ (((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) ∧ 𝑌 ⊆ 𝐴) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
18 | 17 | 3impa 1184 |
. . 3
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋) → 𝑋 ∈ 𝑌)) |
19 | | eqid 2165 |
. . . 4
⊢ (𝐹‘𝑋) = (𝐹‘𝑋) |
20 | | fveq2 5485 |
. . . . . 6
⊢ (𝑧 = 𝑋 → (𝐹‘𝑧) = (𝐹‘𝑋)) |
21 | 20 | eqeq1d 2174 |
. . . . 5
⊢ (𝑧 = 𝑋 → ((𝐹‘𝑧) = (𝐹‘𝑋) ↔ (𝐹‘𝑋) = (𝐹‘𝑋))) |
22 | 21 | rspcev 2829 |
. . . 4
⊢ ((𝑋 ∈ 𝑌 ∧ (𝐹‘𝑋) = (𝐹‘𝑋)) → ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋)) |
23 | 19, 22 | mpan2 422 |
. . 3
⊢ (𝑋 ∈ 𝑌 → ∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋)) |
24 | 18, 23 | impbid1 141 |
. 2
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (∃𝑧 ∈ 𝑌 (𝐹‘𝑧) = (𝐹‘𝑋) ↔ 𝑋 ∈ 𝑌)) |
25 | 4, 24 | bitrd 187 |
1
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ⊆ 𝐴) → ((𝐹‘𝑋) ∈ (𝐹 “ 𝑌) ↔ 𝑋 ∈ 𝑌)) |