ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1elima GIF version

Theorem f1elima 5820
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))

Proof of Theorem f1elima
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 f1fn 5465 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fvelimab 5617 . . . 4 ((𝐹 Fn 𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
31, 2sylan 283 . . 3 ((𝐹:𝐴1-1𝐵𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
433adant2 1018 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
5 ssel 3177 . . . . . . . 8 (𝑌𝐴 → (𝑧𝑌𝑧𝐴))
65impac 381 . . . . . . 7 ((𝑌𝐴𝑧𝑌) → (𝑧𝐴𝑧𝑌))
7 f1fveq 5819 . . . . . . . . . . . 12 ((𝐹:𝐴1-1𝐵 ∧ (𝑧𝐴𝑋𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
87ancom2s 566 . . . . . . . . . . 11 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
98biimpd 144 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
109anassrs 400 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
11 eleq1 2259 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝑧𝑌𝑋𝑌))
1211biimpcd 159 . . . . . . . . 9 (𝑧𝑌 → (𝑧 = 𝑋𝑋𝑌))
1310, 12sylan9 409 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1413anasss 399 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑧𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
156, 14sylan2 286 . . . . . 6 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑌𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1615anassrs 400 . . . . 5 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1716rexlimdva 2614 . . . 4 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
18173impa 1196 . . 3 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
19 eqid 2196 . . . 4 (𝐹𝑋) = (𝐹𝑋)
20 fveq2 5558 . . . . . 6 (𝑧 = 𝑋 → (𝐹𝑧) = (𝐹𝑋))
2120eqeq1d 2205 . . . . 5 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑋) ↔ (𝐹𝑋) = (𝐹𝑋)))
2221rspcev 2868 . . . 4 ((𝑋𝑌 ∧ (𝐹𝑋) = (𝐹𝑋)) → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2319, 22mpan2 425 . . 3 (𝑋𝑌 → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2418, 23impbid1 142 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) ↔ 𝑋𝑌))
254, 24bitrd 188 1 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wcel 2167  wrex 2476  wss 3157  cima 4666   Fn wfn 5253  1-1wf1 5255  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fv 5266
This theorem is referenced by:  f1imass  5821  iseqf1olemnab  10593  fprodssdc  11755  ctinfom  12645  ssnnctlemct  12663
  Copyright terms: Public domain W3C validator