ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impcomd GIF version

Theorem impcomd 253
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
impcomd (𝜑 → ((𝜒𝜓) → 𝜃))

Proof of Theorem impcomd
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21com23 78 . 2 (𝜑 → (𝜒 → (𝜓𝜃)))
32impd 252 1 (𝜑 → ((𝜒𝜓) → 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  txlm  12919
  Copyright terms: Public domain W3C validator