ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impcomd Unicode version

Theorem impcomd 253
Description: Importation deduction with commuted antecedents. (Contributed by Peter Mazsa, 24-Sep-2022.) (Proof shortened by Wolf Lammen, 22-Oct-2022.)
Hypothesis
Ref Expression
imp3.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
Assertion
Ref Expression
impcomd  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)

Proof of Theorem impcomd
StepHypRef Expression
1 imp3.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  th ) ) )
21com23 78 . 2  |-  ( ph  ->  ( ch  ->  ( ps  ->  th ) ) )
32impd 252 1  |-  ( ph  ->  ( ( ch  /\  ps )  ->  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  txlm  12919
  Copyright terms: Public domain W3C validator