| Step | Hyp | Ref
 | Expression | 
| 1 |   | r19.27v 2624 | 
. . . . . . . 8
⊢
((∀𝑢 ∈
𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑢 ∈ 𝐽 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 2 |   | r19.28v 2625 | 
. . . . . . . . 9
⊢ (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 3 | 2 | ralimi 2560 | 
. . . . . . . 8
⊢
(∀𝑢 ∈
𝐽 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 4 | 1, 3 | syl 14 | 
. . . . . . 7
⊢
((∀𝑢 ∈
𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 5 |   | simprl 529 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → 𝑤 ∈ (𝐽 ×t 𝐾)) | 
| 6 |   | txlm.j | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | 
| 7 |   | topontop 14250 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) | 
| 8 | 6, 7 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐽 ∈ Top) | 
| 9 |   | txlm.k | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) | 
| 10 |   | topontop 14250 | 
. . . . . . . . . . . . . . . . . 18
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) | 
| 11 | 9, 10 | syl 14 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐾 ∈ Top) | 
| 12 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . . 18
⊢ ran
(𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) | 
| 13 | 12 | txval 14491 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) | 
| 14 | 8, 11, 13 | syl2anc 411 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) | 
| 15 | 14 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) | 
| 16 | 5, 15 | eleqtrd 2275 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → 𝑤 ∈ (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)))) | 
| 17 |   | simprr 531 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → 〈𝑅, 𝑆〉 ∈ 𝑤) | 
| 18 |   | tg2 14296 | 
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ (topGen‘ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤) → ∃𝑡 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤)) | 
| 19 | 16, 17, 18 | syl2anc 411 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → ∃𝑡 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤)) | 
| 20 |   | vex 2766 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑢 ∈ V | 
| 21 |   | vex 2766 | 
. . . . . . . . . . . . . . . 16
⊢ 𝑣 ∈ V | 
| 22 | 20, 21 | xpex 4778 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 × 𝑣) ∈ V | 
| 23 | 22 | rgen2w 2553 | 
. . . . . . . . . . . . . 14
⊢
∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V | 
| 24 |   | eqid 2196 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) = (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣)) | 
| 25 |   | eleq2 2260 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝑢 × 𝑣) → (〈𝑅, 𝑆〉 ∈ 𝑡 ↔ 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣))) | 
| 26 |   | sseq1 3206 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝑢 × 𝑣) → (𝑡 ⊆ 𝑤 ↔ (𝑢 × 𝑣) ⊆ 𝑤)) | 
| 27 | 25, 26 | anbi12d 473 | 
. . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝑢 × 𝑣) → ((〈𝑅, 𝑆〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤) ↔ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) | 
| 28 | 24, 27 | rexrnmpo 6038 | 
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 (𝑢 × 𝑣) ∈ V → (∃𝑡 ∈ ran (𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤) ↔ ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) | 
| 29 | 23, 28 | ax-mp 5 | 
. . . . . . . . . . . . 13
⊢
(∃𝑡 ∈ ran
(𝑢 ∈ 𝐽, 𝑣 ∈ 𝐾 ↦ (𝑢 × 𝑣))(〈𝑅, 𝑆〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤) ↔ ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) | 
| 30 | 19, 29 | sylib 122 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤)) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) | 
| 31 | 30 | ex 115 | 
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤) → ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) | 
| 32 |   | r19.29 2634 | 
. . . . . . . . . . . . 13
⊢
((∀𝑢 ∈
𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑢 ∈ 𝐽 (∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) | 
| 33 |   | r19.29 2634 | 
. . . . . . . . . . . . . . 15
⊢
((∀𝑣 ∈
𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑣 ∈ 𝐾 (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))) | 
| 34 |   | simprl 529 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣)) | 
| 35 |   | opelxp 4693 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ↔ (𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣)) | 
| 36 | 34, 35 | sylib 122 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣)) | 
| 37 |   | pm2.27 40 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑅 ∈ 𝑢 → ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) | 
| 38 |   | pm2.27 40 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑆 ∈ 𝑣 → ((𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) | 
| 39 | 37, 38 | im2anan9 598 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣) → (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 40 | 36, 39 | syl 14 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 41 |   | txlm.z | 
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 =
(ℤ≥‘𝑀) | 
| 42 | 41 | rexanuz2 11156 | 
. . . . . . . . . . . . . . . . . . . 20
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) ↔ (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) | 
| 43 | 41 | uztrn2 9619 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) | 
| 44 |   | opelxpi 4695 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑢 × 𝑣)) | 
| 45 |   | txlm.h | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) | 
| 46 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) | 
| 47 |   | fveq2 5558 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑛 = 𝑘 → (𝐺‘𝑛) = (𝐺‘𝑘)) | 
| 48 | 46, 47 | opeq12d 3816 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑛 = 𝑘 → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 = 〈(𝐹‘𝑘), (𝐺‘𝑘)〉) | 
| 49 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | 
| 50 |   | txlm.f | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝐹:𝑍⟶𝑋) | 
| 51 | 50 | ad4antr 494 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → 𝐹:𝑍⟶𝑋) | 
| 52 | 51, 49 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑋) | 
| 53 |   | txlm.g | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝐺:𝑍⟶𝑌) | 
| 54 | 53 | ad4antr 494 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → 𝐺:𝑍⟶𝑌) | 
| 55 | 54, 49 | ffvelcdmd 5698 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝑌) | 
| 56 |   | opexg 4261 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (((𝐹‘𝑘) ∈ 𝑋 ∧ (𝐺‘𝑘) ∈ 𝑌) → 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ V) | 
| 57 | 52, 55, 56 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ V) | 
| 58 | 45, 48, 49, 57 | fvmptd3 5655 | 
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = 〈(𝐹‘𝑘), (𝐺‘𝑘)〉) | 
| 59 | 58 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑣) ↔ 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑢 × 𝑣))) | 
| 60 | 44, 59 | imbitrrid 156 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → (𝐻‘𝑘) ∈ (𝑢 × 𝑣))) | 
| 61 |   | simplrr 536 | 
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (𝑢 × 𝑣) ⊆ 𝑤) | 
| 62 | 61 | sseld 3182 | 
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑣) → (𝐻‘𝑘) ∈ 𝑤)) | 
| 63 | 60, 62 | syld 45 | 
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘 ∈ 𝑍) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → (𝐻‘𝑘) ∈ 𝑤)) | 
| 64 | 43, 63 | sylan2 286 | 
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → (𝐻‘𝑘) ∈ 𝑤)) | 
| 65 | 64 | anassrs 400 | 
. . . . . . . . . . . . . . . . . . . . . 22
⊢
((((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → (((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → (𝐻‘𝑘) ∈ 𝑤)) | 
| 66 | 65 | ralimdva 2564 | 
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 67 | 66 | reximdva 2599 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐺‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 68 | 42, 67 | biimtrrid 153 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ((∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ∧ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 69 | 40, 68 | syld 45 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 70 | 69 | ex 115 | 
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 71 | 70 | impcomd 255 | 
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑢 ∈ 𝐽) ∧ 𝑣 ∈ 𝐾) → ((((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 72 | 71 | rexlimdva 2614 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → (∃𝑣 ∈ 𝐾 (((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 73 | 33, 72 | syl5 32 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑢 ∈ 𝐽) → ((∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 74 | 73 | rexlimdva 2614 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → (∃𝑢 ∈ 𝐽 (∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 75 | 32, 74 | syl5 32 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ((∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ∧ ∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) | 
| 76 | 75 | expcomd 1452 | 
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑢 ∈ 𝐽 ∃𝑣 ∈ 𝐾 (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 77 | 31, 76 | syld 45 | 
. . . . . . . . . 10
⊢ (𝜑 → ((𝑤 ∈ (𝐽 ×t 𝐾) ∧ 〈𝑅, 𝑆〉 ∈ 𝑤) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 78 | 77 | expdimp 259 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → (〈𝑅, 𝑆〉 ∈ 𝑤 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 79 | 78 | com23 78 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ (𝐽 ×t 𝐾)) → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → (〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 80 | 79 | ralrimdva 2577 | 
. . . . . . 7
⊢ (𝜑 → (∀𝑢 ∈ 𝐽 ∀𝑣 ∈ 𝐾 ((𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 81 | 4, 80 | syl5 32 | 
. . . . . 6
⊢ (𝜑 → ((∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 82 | 81 | adantr 276 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → ((∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 83 | 8 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → 𝐽 ∈ Top) | 
| 84 | 11 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → 𝐾 ∈ Top) | 
| 85 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → 𝑢 ∈ 𝐽) | 
| 86 |   | toponmax 14261 | 
. . . . . . . . . . . . . 14
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 ∈ 𝐾) | 
| 87 | 9, 86 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ∈ 𝐾) | 
| 88 | 87 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → 𝑌 ∈ 𝐾) | 
| 89 |   | txopn 14501 | 
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑢 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾)) → (𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾)) | 
| 90 | 83, 84, 85, 88, 89 | syl22anc 1250 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → (𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾)) | 
| 91 |   | eleq2 2260 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑢 × 𝑌) → (〈𝑅, 𝑆〉 ∈ 𝑤 ↔ 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌))) | 
| 92 |   | eleq2 2260 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑢 × 𝑌) → ((𝐻‘𝑘) ∈ 𝑤 ↔ (𝐻‘𝑘) ∈ (𝑢 × 𝑌))) | 
| 93 | 92 | rexralbidv 2523 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑢 × 𝑌) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌))) | 
| 94 | 91, 93 | imbi12d 234 | 
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑢 × 𝑌) → ((〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) ↔ (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌)))) | 
| 95 | 94 | rspcv 2864 | 
. . . . . . . . . . 11
⊢ ((𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌)))) | 
| 96 | 90, 95 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌)))) | 
| 97 |   | simprl 529 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → 𝑆 ∈ 𝑌) | 
| 98 |   | opelxpi 4695 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑌) → 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌)) | 
| 99 | 97, 98 | sylan2 286 | 
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑢 ∧ (𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽))) → 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌)) | 
| 100 | 99 | expcom 116 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → (𝑅 ∈ 𝑢 → 〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌))) | 
| 101 |   | simpr 110 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝑘 ∈ 𝑍) | 
| 102 | 50 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑋) | 
| 103 | 53 | ffvelcdmda 5697 | 
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) ∈ 𝑌) | 
| 104 | 102, 103,
56 | syl2anc 411 | 
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ V) | 
| 105 | 45, 48, 101, 104 | fvmptd3 5655 | 
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = 〈(𝐹‘𝑘), (𝐺‘𝑘)〉) | 
| 106 | 105 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑌) ↔ 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑢 × 𝑌))) | 
| 107 |   | opelxp1 4697 | 
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑢 × 𝑌) → (𝐹‘𝑘) ∈ 𝑢) | 
| 108 | 106, 107 | biimtrdi 163 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑌) → (𝐹‘𝑘) ∈ 𝑢)) | 
| 109 | 43, 108 | sylan2 286 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑌) → (𝐹‘𝑘) ∈ 𝑢)) | 
| 110 | 109 | anassrs 400 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐻‘𝑘) ∈ (𝑢 × 𝑌) → (𝐹‘𝑘) ∈ 𝑢)) | 
| 111 | 110 | ralimdva 2564 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) | 
| 112 | 111 | reximdva 2599 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) | 
| 113 | 112 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) | 
| 114 | 100, 113 | imim12d 74 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → ((〈𝑅, 𝑆〉 ∈ (𝑢 × 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑢 × 𝑌)) → (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) | 
| 115 | 96, 114 | syld 45 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) | 
| 116 | 115 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑆 ∈ 𝑌) ∧ 𝑢 ∈ 𝐽) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) | 
| 117 | 116 | ralrimdva 2577 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑆 ∈ 𝑌) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) | 
| 118 | 117 | adantrl 478 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) | 
| 119 | 8 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → 𝐽 ∈ Top) | 
| 120 | 11 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → 𝐾 ∈ Top) | 
| 121 |   | toponmax 14261 | 
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | 
| 122 | 6, 121 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑋 ∈ 𝐽) | 
| 123 | 122 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → 𝑋 ∈ 𝐽) | 
| 124 |   | simprr 531 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → 𝑣 ∈ 𝐾) | 
| 125 |   | txopn 14501 | 
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑋 ∈ 𝐽 ∧ 𝑣 ∈ 𝐾)) → (𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾)) | 
| 126 | 119, 120,
123, 124, 125 | syl22anc 1250 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → (𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾)) | 
| 127 |   | eleq2 2260 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑋 × 𝑣) → (〈𝑅, 𝑆〉 ∈ 𝑤 ↔ 〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣))) | 
| 128 |   | eleq2 2260 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 = (𝑋 × 𝑣) → ((𝐻‘𝑘) ∈ 𝑤 ↔ (𝐻‘𝑘) ∈ (𝑋 × 𝑣))) | 
| 129 | 128 | rexralbidv 2523 | 
. . . . . . . . . . . . 13
⊢ (𝑤 = (𝑋 × 𝑣) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣))) | 
| 130 | 127, 129 | imbi12d 234 | 
. . . . . . . . . . . 12
⊢ (𝑤 = (𝑋 × 𝑣) → ((〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣)))) | 
| 131 | 130 | rspcv 2864 | 
. . . . . . . . . . 11
⊢ ((𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣)))) | 
| 132 | 126, 131 | syl 14 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣)))) | 
| 133 |   | opelxpi 4695 | 
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑣) → 〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣)) | 
| 134 | 133 | ex 115 | 
. . . . . . . . . . . 12
⊢ (𝑅 ∈ 𝑋 → (𝑆 ∈ 𝑣 → 〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣))) | 
| 135 | 134 | ad2antrl 490 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → (𝑆 ∈ 𝑣 → 〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣))) | 
| 136 | 105 | eleq1d 2265 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑋 × 𝑣) ↔ 〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑋 × 𝑣))) | 
| 137 |   | opelxp2 4698 | 
. . . . . . . . . . . . . . . . 17
⊢
(〈(𝐹‘𝑘), (𝐺‘𝑘)〉 ∈ (𝑋 × 𝑣) → (𝐺‘𝑘) ∈ 𝑣) | 
| 138 | 136, 137 | biimtrdi 163 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝐻‘𝑘) ∈ (𝑋 × 𝑣) → (𝐺‘𝑘) ∈ 𝑣)) | 
| 139 | 43, 138 | sylan2 286 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐻‘𝑘) ∈ (𝑋 × 𝑣) → (𝐺‘𝑘) ∈ 𝑣)) | 
| 140 | 139 | anassrs 400 | 
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐻‘𝑘) ∈ (𝑋 × 𝑣) → (𝐺‘𝑘) ∈ 𝑣)) | 
| 141 | 140 | ralimdva 2564 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) | 
| 142 | 141 | reximdva 2599 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) | 
| 143 | 142 | adantr 276 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) | 
| 144 | 135, 143 | imim12d 74 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → ((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑣) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ (𝑋 × 𝑣)) → (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 145 | 132, 144 | syld 45 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 146 | 145 | anassrs 400 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑅 ∈ 𝑋) ∧ 𝑣 ∈ 𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 147 | 146 | ralrimdva 2577 | 
. . . . . . 7
⊢ ((𝜑 ∧ 𝑅 ∈ 𝑋) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 148 | 147 | adantrr 479 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) | 
| 149 | 118, 148 | jcad 307 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤) → (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)))) | 
| 150 | 82, 149 | impbid 129 | 
. . . 4
⊢ ((𝜑 ∧ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) → ((∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)) ↔ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 151 | 150 | pm5.32da 452 | 
. . 3
⊢ (𝜑 → (((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)))) | 
| 152 |   | opelxp 4693 | 
. . . 4
⊢
(〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ↔ (𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌)) | 
| 153 | 152 | anbi1i 458 | 
. . 3
⊢
((〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤))) | 
| 154 | 151, 153 | bitr4di 198 | 
. 2
⊢ (𝜑 → (((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)))) | 
| 155 |   | txlm.m | 
. . . . 5
⊢ (𝜑 → 𝑀 ∈ ℤ) | 
| 156 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) | 
| 157 | 6, 41, 155, 50, 156 | lmbrf 14451 | 
. . . 4
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑅 ↔ (𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)))) | 
| 158 |   | eqidd 2197 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐺‘𝑘) = (𝐺‘𝑘)) | 
| 159 | 9, 41, 155, 53, 158 | lmbrf 14451 | 
. . . 4
⊢ (𝜑 → (𝐺(⇝𝑡‘𝐾)𝑆 ↔ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)))) | 
| 160 | 157, 159 | anbi12d 473 | 
. . 3
⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ ((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))))) | 
| 161 |   | an4 586 | 
. . 3
⊢ (((𝑅 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) ∧ (𝑆 ∈ 𝑌 ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣)))) | 
| 162 | 160, 161 | bitrdi 196 | 
. 2
⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ ((𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌) ∧ (∀𝑢 ∈ 𝐽 (𝑅 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ∧ ∀𝑣 ∈ 𝐾 (𝑆 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐺‘𝑘) ∈ 𝑣))))) | 
| 163 |   | txtopon 14498 | 
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 164 | 6, 9, 163 | syl2anc 411 | 
. . 3
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) | 
| 165 | 50 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ 𝑋) | 
| 166 | 53 | ffvelcdmda 5697 | 
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐺‘𝑛) ∈ 𝑌) | 
| 167 | 165, 166 | opelxpd 4696 | 
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 〈(𝐹‘𝑛), (𝐺‘𝑛)〉 ∈ (𝑋 × 𝑌)) | 
| 168 | 167, 45 | fmptd 5716 | 
. . 3
⊢ (𝜑 → 𝐻:𝑍⟶(𝑋 × 𝑌)) | 
| 169 |   | eqidd 2197 | 
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐻‘𝑘) = (𝐻‘𝑘)) | 
| 170 | 164, 41, 155, 168, 169 | lmbrf 14451 | 
. 2
⊢ (𝜑 → (𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉 ↔ (〈𝑅, 𝑆〉 ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(〈𝑅, 𝑆〉 ∈ 𝑤 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐻‘𝑘) ∈ 𝑤)))) | 
| 171 | 154, 162,
170 | 3bitr4d 220 | 
1
⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |