ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  txlm GIF version

Theorem txlm 14866
Description: Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
Hypotheses
Ref Expression
txlm.z 𝑍 = (ℤ𝑀)
txlm.m (𝜑𝑀 ∈ ℤ)
txlm.j (𝜑𝐽 ∈ (TopOn‘𝑋))
txlm.k (𝜑𝐾 ∈ (TopOn‘𝑌))
txlm.f (𝜑𝐹:𝑍𝑋)
txlm.g (𝜑𝐺:𝑍𝑌)
txlm.h 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
Assertion
Ref Expression
txlm (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
Distinct variable groups:   𝑛,𝐹   𝜑,𝑛   𝑛,𝐺   𝑛,𝐽   𝑛,𝐾   𝑛,𝑋   𝑛,𝑌   𝑛,𝑍
Allowed substitution hints:   𝑅(𝑛)   𝑆(𝑛)   𝐻(𝑛)   𝑀(𝑛)

Proof of Theorem txlm
Dummy variables 𝑗 𝑘 𝑢 𝑣 𝑤 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.27v 2635 . . . . . . . 8 ((∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑢𝐽 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
2 r19.28v 2636 . . . . . . . . 9 (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
32ralimi 2571 . . . . . . . 8 (∀𝑢𝐽 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
41, 3syl 14 . . . . . . 7 ((∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
5 simprl 529 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → 𝑤 ∈ (𝐽 ×t 𝐾))
6 txlm.j . . . . . . . . . . . . . . . . . 18 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 topontop 14601 . . . . . . . . . . . . . . . . . 18 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
86, 7syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐽 ∈ Top)
9 txlm.k . . . . . . . . . . . . . . . . . 18 (𝜑𝐾 ∈ (TopOn‘𝑌))
10 topontop 14601 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
119, 10syl 14 . . . . . . . . . . . . . . . . 17 (𝜑𝐾 ∈ Top)
12 eqid 2207 . . . . . . . . . . . . . . . . . 18 ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
1312txval 14842 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
148, 11, 13syl2anc 411 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
1514adantr 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → (𝐽 ×t 𝐾) = (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
165, 15eleqtrd 2286 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → 𝑤 ∈ (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))))
17 simprr 531 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → ⟨𝑅, 𝑆⟩ ∈ 𝑤)
18 tg2 14647 . . . . . . . . . . . . . 14 ((𝑤 ∈ (topGen‘ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤) → ∃𝑡 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑡𝑡𝑤))
1916, 17, 18syl2anc 411 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → ∃𝑡 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑡𝑡𝑤))
20 vex 2779 . . . . . . . . . . . . . . . 16 𝑢 ∈ V
21 vex 2779 . . . . . . . . . . . . . . . 16 𝑣 ∈ V
2220, 21xpex 4808 . . . . . . . . . . . . . . 15 (𝑢 × 𝑣) ∈ V
2322rgen2w 2564 . . . . . . . . . . . . . 14 𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V
24 eqid 2207 . . . . . . . . . . . . . . 15 (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣)) = (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))
25 eleq2 2271 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 × 𝑣) → (⟨𝑅, 𝑆⟩ ∈ 𝑡 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣)))
26 sseq1 3224 . . . . . . . . . . . . . . . 16 (𝑡 = (𝑢 × 𝑣) → (𝑡𝑤 ↔ (𝑢 × 𝑣) ⊆ 𝑤))
2725, 26anbi12d 473 . . . . . . . . . . . . . . 15 (𝑡 = (𝑢 × 𝑣) → ((⟨𝑅, 𝑆⟩ ∈ 𝑡𝑡𝑤) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2824, 27rexrnmpo 6084 . . . . . . . . . . . . . 14 (∀𝑢𝐽𝑣𝐾 (𝑢 × 𝑣) ∈ V → (∃𝑡 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑡𝑡𝑤) ↔ ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
2923, 28ax-mp 5 . . . . . . . . . . . . 13 (∃𝑡 ∈ ran (𝑢𝐽, 𝑣𝐾 ↦ (𝑢 × 𝑣))(⟨𝑅, 𝑆⟩ ∈ 𝑡𝑡𝑤) ↔ ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
3019, 29sylib 122 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤)) → ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤))
3130ex 115 . . . . . . . . . . 11 (𝜑 → ((𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤) → ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
32 r19.29 2645 . . . . . . . . . . . . 13 ((∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑢𝐽 (∀𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
33 r19.29 2645 . . . . . . . . . . . . . . 15 ((∀𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑣𝐾 (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)))
34 simprl 529 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣))
35 opelxp 4723 . . . . . . . . . . . . . . . . . . . . 21 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ↔ (𝑅𝑢𝑆𝑣))
3634, 35sylib 122 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (𝑅𝑢𝑆𝑣))
37 pm2.27 40 . . . . . . . . . . . . . . . . . . . . 21 (𝑅𝑢 → ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
38 pm2.27 40 . . . . . . . . . . . . . . . . . . . . 21 (𝑆𝑣 → ((𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))
3937, 38im2anan9 598 . . . . . . . . . . . . . . . . . . . 20 ((𝑅𝑢𝑆𝑣) → (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
4036, 39syl 14 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
41 txlm.z . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (ℤ𝑀)
4241rexanuz2 11417 . . . . . . . . . . . . . . . . . . . 20 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) ↔ (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))
4341uztrn2 9701 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
44 opelxpi 4725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑢 × 𝑣))
45 txlm.h . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐻 = (𝑛𝑍 ↦ ⟨(𝐹𝑛), (𝐺𝑛)⟩)
46 fveq2 5599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
47 fveq2 5599 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
4846, 47opeq12d 3841 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → ⟨(𝐹𝑛), (𝐺𝑛)⟩ = ⟨(𝐹𝑘), (𝐺𝑘)⟩)
49 simpr 110 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → 𝑘𝑍)
50 txlm.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝐹:𝑍𝑋)
5150ad4antr 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → 𝐹:𝑍𝑋)
5251, 49ffvelcdmd 5739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
53 txlm.g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝐺:𝑍𝑌)
5453ad4antr 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → 𝐺:𝑍𝑌)
5554, 49ffvelcdmd 5739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (𝐺𝑘) ∈ 𝑌)
56 opexg 4290 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝐹𝑘) ∈ 𝑋 ∧ (𝐺𝑘) ∈ 𝑌) → ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ V)
5752, 55, 56syl2anc 411 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ V)
5845, 48, 49, 57fvmptd3 5696 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (𝐻𝑘) = ⟨(𝐹𝑘), (𝐺𝑘)⟩)
5958eleq1d 2276 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → ((𝐻𝑘) ∈ (𝑢 × 𝑣) ↔ ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑢 × 𝑣)))
6044, 59imbitrrid 156 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → (𝐻𝑘) ∈ (𝑢 × 𝑣)))
61 simplrr 536 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (𝑢 × 𝑣) ⊆ 𝑤)
6261sseld 3200 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → ((𝐻𝑘) ∈ (𝑢 × 𝑣) → (𝐻𝑘) ∈ 𝑤))
6360, 62syld 45 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → (𝐻𝑘) ∈ 𝑤))
6443, 63sylan2 286 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → (𝐻𝑘) ∈ 𝑤))
6564anassrs 400 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → (𝐻𝑘) ∈ 𝑤))
6665ralimdva 2575 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) ∧ 𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
6766reximdva 2610 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ 𝑢 ∧ (𝐺𝑘) ∈ 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
6842, 67biimtrrid 153 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ((∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢 ∧ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
6940, 68syld 45 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑢𝐽) ∧ 𝑣𝐾) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7069ex 115 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢𝐽) ∧ 𝑣𝐾) → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
7170impcomd 255 . . . . . . . . . . . . . . . 16 (((𝜑𝑢𝐽) ∧ 𝑣𝐾) → ((((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7271rexlimdva 2625 . . . . . . . . . . . . . . 15 ((𝜑𝑢𝐽) → (∃𝑣𝐾 (((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7333, 72syl5 32 . . . . . . . . . . . . . 14 ((𝜑𝑢𝐽) → ((∀𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7473rexlimdva 2625 . . . . . . . . . . . . 13 (𝜑 → (∃𝑢𝐽 (∀𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7532, 74syl5 32 . . . . . . . . . . . 12 (𝜑 → ((∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ∧ ∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))
7675expcomd 1462 . . . . . . . . . . 11 (𝜑 → (∃𝑢𝐽𝑣𝐾 (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑣) ∧ (𝑢 × 𝑣) ⊆ 𝑤) → (∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
7731, 76syld 45 . . . . . . . . . 10 (𝜑 → ((𝑤 ∈ (𝐽 ×t 𝐾) ∧ ⟨𝑅, 𝑆⟩ ∈ 𝑤) → (∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
7877expdimp 259 . . . . . . . . 9 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → (⟨𝑅, 𝑆⟩ ∈ 𝑤 → (∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
7978com23 78 . . . . . . . 8 ((𝜑𝑤 ∈ (𝐽 ×t 𝐾)) → (∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → (⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
8079ralrimdva 2588 . . . . . . 7 (𝜑 → (∀𝑢𝐽𝑣𝐾 ((𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
814, 80syl5 32 . . . . . 6 (𝜑 → ((∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
8281adantr 276 . . . . 5 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → ((∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) → ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
838adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → 𝐽 ∈ Top)
8411adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → 𝐾 ∈ Top)
85 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → 𝑢𝐽)
86 toponmax 14612 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
879, 86syl 14 . . . . . . . . . . . . 13 (𝜑𝑌𝐾)
8887adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → 𝑌𝐾)
89 txopn 14852 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑢𝐽𝑌𝐾)) → (𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾))
9083, 84, 85, 88, 89syl22anc 1251 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → (𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾))
91 eleq2 2271 . . . . . . . . . . . . 13 (𝑤 = (𝑢 × 𝑌) → (⟨𝑅, 𝑆⟩ ∈ 𝑤 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌)))
92 eleq2 2271 . . . . . . . . . . . . . 14 (𝑤 = (𝑢 × 𝑌) → ((𝐻𝑘) ∈ 𝑤 ↔ (𝐻𝑘) ∈ (𝑢 × 𝑌)))
9392rexralbidv 2534 . . . . . . . . . . . . 13 (𝑤 = (𝑢 × 𝑌) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌)))
9491, 93imbi12d 234 . . . . . . . . . . . 12 (𝑤 = (𝑢 × 𝑌) → ((⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌))))
9594rspcv 2880 . . . . . . . . . . 11 ((𝑢 × 𝑌) ∈ (𝐽 ×t 𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌))))
9690, 95syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌))))
97 simprl 529 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → 𝑆𝑌)
98 opelxpi 4725 . . . . . . . . . . . . 13 ((𝑅𝑢𝑆𝑌) → ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌))
9997, 98sylan2 286 . . . . . . . . . . . 12 ((𝑅𝑢 ∧ (𝜑 ∧ (𝑆𝑌𝑢𝐽))) → ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌))
10099expcom 116 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → (𝑅𝑢 → ⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌)))
101 simpr 110 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → 𝑘𝑍)
10250ffvelcdmda 5738 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
10353ffvelcdmda 5738 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝑌)
104102, 103, 56syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝑍) → ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ V)
10545, 48, 101, 104fvmptd3 5696 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝑍) → (𝐻𝑘) = ⟨(𝐹𝑘), (𝐺𝑘)⟩)
106105eleq1d 2276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → ((𝐻𝑘) ∈ (𝑢 × 𝑌) ↔ ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑢 × 𝑌)))
107 opelxp1 4727 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑢 × 𝑌) → (𝐹𝑘) ∈ 𝑢)
108106, 107biimtrdi 163 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝐻𝑘) ∈ (𝑢 × 𝑌) → (𝐹𝑘) ∈ 𝑢))
10943, 108sylan2 286 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐻𝑘) ∈ (𝑢 × 𝑌) → (𝐹𝑘) ∈ 𝑢))
110109anassrs 400 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐻𝑘) ∈ (𝑢 × 𝑌) → (𝐹𝑘) ∈ 𝑢))
111110ralimdva 2575 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
112111reximdva 2610 . . . . . . . . . . . 12 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
113112adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))
114100, 113imim12d 74 . . . . . . . . . 10 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → ((⟨𝑅, 𝑆⟩ ∈ (𝑢 × 𝑌) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑢 × 𝑌)) → (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
11596, 114syld 45 . . . . . . . . 9 ((𝜑 ∧ (𝑆𝑌𝑢𝐽)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
116115anassrs 400 . . . . . . . 8 (((𝜑𝑆𝑌) ∧ 𝑢𝐽) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
117116ralrimdva 2588 . . . . . . 7 ((𝜑𝑆𝑌) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → ∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
118117adantrl 478 . . . . . 6 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → ∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)))
1198adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → 𝐽 ∈ Top)
12011adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → 𝐾 ∈ Top)
121 toponmax 14612 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
1226, 121syl 14 . . . . . . . . . . . . 13 (𝜑𝑋𝐽)
123122adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → 𝑋𝐽)
124 simprr 531 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → 𝑣𝐾)
125 txopn 14852 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑋𝐽𝑣𝐾)) → (𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾))
126119, 120, 123, 124, 125syl22anc 1251 . . . . . . . . . . 11 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → (𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾))
127 eleq2 2271 . . . . . . . . . . . . 13 (𝑤 = (𝑋 × 𝑣) → (⟨𝑅, 𝑆⟩ ∈ 𝑤 ↔ ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣)))
128 eleq2 2271 . . . . . . . . . . . . . 14 (𝑤 = (𝑋 × 𝑣) → ((𝐻𝑘) ∈ 𝑤 ↔ (𝐻𝑘) ∈ (𝑋 × 𝑣)))
129128rexralbidv 2534 . . . . . . . . . . . . 13 (𝑤 = (𝑋 × 𝑣) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣)))
130127, 129imbi12d 234 . . . . . . . . . . . 12 (𝑤 = (𝑋 × 𝑣) → ((⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣))))
131130rspcv 2880 . . . . . . . . . . 11 ((𝑋 × 𝑣) ∈ (𝐽 ×t 𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣))))
132126, 131syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣))))
133 opelxpi 4725 . . . . . . . . . . . . 13 ((𝑅𝑋𝑆𝑣) → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣))
134133ex 115 . . . . . . . . . . . 12 (𝑅𝑋 → (𝑆𝑣 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣)))
135134ad2antrl 490 . . . . . . . . . . 11 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → (𝑆𝑣 → ⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣)))
136105eleq1d 2276 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝑍) → ((𝐻𝑘) ∈ (𝑋 × 𝑣) ↔ ⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑋 × 𝑣)))
137 opelxp2 4728 . . . . . . . . . . . . . . . . 17 (⟨(𝐹𝑘), (𝐺𝑘)⟩ ∈ (𝑋 × 𝑣) → (𝐺𝑘) ∈ 𝑣)
138136, 137biimtrdi 163 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑍) → ((𝐻𝑘) ∈ (𝑋 × 𝑣) → (𝐺𝑘) ∈ 𝑣))
13943, 138sylan2 286 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐻𝑘) ∈ (𝑋 × 𝑣) → (𝐺𝑘) ∈ 𝑣))
140139anassrs 400 . . . . . . . . . . . . . 14 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐻𝑘) ∈ (𝑋 × 𝑣) → (𝐺𝑘) ∈ 𝑣))
141140ralimdva 2575 . . . . . . . . . . . . 13 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣) → ∀𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))
142141reximdva 2610 . . . . . . . . . . . 12 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))
143142adantr 276 . . . . . . . . . . 11 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))
144135, 143imim12d 74 . . . . . . . . . 10 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑣) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ (𝑋 × 𝑣)) → (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
145132, 144syld 45 . . . . . . . . 9 ((𝜑 ∧ (𝑅𝑋𝑣𝐾)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
146145anassrs 400 . . . . . . . 8 (((𝜑𝑅𝑋) ∧ 𝑣𝐾) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
147146ralrimdva 2588 . . . . . . 7 ((𝜑𝑅𝑋) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
148147adantrr 479 . . . . . 6 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))
149118, 148jcad 307 . . . . 5 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → (∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤) → (∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))))
15082, 149impbid 129 . . . 4 ((𝜑 ∧ (𝑅𝑋𝑆𝑌)) → ((∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)) ↔ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
151150pm5.32da 452 . . 3 (𝜑 → (((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))) ↔ ((𝑅𝑋𝑆𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))))
152 opelxp 4723 . . . 4 (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ↔ (𝑅𝑋𝑆𝑌))
153152anbi1i 458 . . 3 ((⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)) ↔ ((𝑅𝑋𝑆𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤)))
154151, 153bitr4di 198 . 2 (𝜑 → (((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))) ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))))
155 txlm.m . . . . 5 (𝜑𝑀 ∈ ℤ)
156 eqidd 2208 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) = (𝐹𝑘))
1576, 41, 155, 50, 156lmbrf 14802 . . . 4 (𝜑 → (𝐹(⇝𝑡𝐽)𝑅 ↔ (𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢))))
158 eqidd 2208 . . . . 5 ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐺𝑘))
1599, 41, 155, 53, 158lmbrf 14802 . . . 4 (𝜑 → (𝐺(⇝𝑡𝐾)𝑆 ↔ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))))
160157, 159anbi12d 473 . . 3 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ ((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))))
161 an4 586 . . 3 (((𝑅𝑋 ∧ ∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢)) ∧ (𝑆𝑌 ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣))))
162160, 161bitrdi 196 . 2 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ ((𝑅𝑋𝑆𝑌) ∧ (∀𝑢𝐽 (𝑅𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ 𝑢) ∧ ∀𝑣𝐾 (𝑆𝑣 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐺𝑘) ∈ 𝑣)))))
163 txtopon 14849 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
1646, 9, 163syl2anc 411 . . 3 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
16550ffvelcdmda 5738 . . . . 5 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ 𝑋)
16653ffvelcdmda 5738 . . . . 5 ((𝜑𝑛𝑍) → (𝐺𝑛) ∈ 𝑌)
167165, 166opelxpd 4726 . . . 4 ((𝜑𝑛𝑍) → ⟨(𝐹𝑛), (𝐺𝑛)⟩ ∈ (𝑋 × 𝑌))
168167, 45fmptd 5757 . . 3 (𝜑𝐻:𝑍⟶(𝑋 × 𝑌))
169 eqidd 2208 . . 3 ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐻𝑘))
170164, 41, 155, 168, 169lmbrf 14802 . 2 (𝜑 → (𝐻(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩ ↔ (⟨𝑅, 𝑆⟩ ∈ (𝑋 × 𝑌) ∧ ∀𝑤 ∈ (𝐽 ×t 𝐾)(⟨𝑅, 𝑆⟩ ∈ 𝑤 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐻𝑘) ∈ 𝑤))))
171154, 162, 1703bitr4d 220 1 (𝜑 → ((𝐹(⇝𝑡𝐽)𝑅𝐺(⇝𝑡𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))⟨𝑅, 𝑆⟩))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2178  wral 2486  wrex 2487  Vcvv 2776  wss 3174  cop 3646   class class class wbr 4059  cmpt 4121   × cxp 4691  ran crn 4694  wf 5286  cfv 5290  (class class class)co 5967  cmpo 5969  cz 9407  cuz 9683  topGenctg 13201  Topctop 14584  TopOnctopon 14597  𝑡clm 14774   ×t ctx 14839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-pm 6761  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-topgen 13207  df-top 14585  df-topon 14598  df-bases 14630  df-lm 14777  df-tx 14840
This theorem is referenced by:  lmcn2  14867
  Copyright terms: Public domain W3C validator