![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imp31 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 857 3imp 1193 3expa 1203 bilukdc 1396 reusv3 4461 dfimafn 5565 funimass4 5567 funimass3 5633 isopolem 5823 smores2 6295 tfrlem9 6320 nnmordi 6517 mulcanpig 7334 elnnz 9263 nzadd 9305 irradd 9646 irrmul 9647 uzsubsubfz 10047 fzo1fzo0n0 10183 elfzonelfzo 10230 infpnlem1 12357 tgcl 13567 |
Copyright terms: Public domain | W3C validator |