Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imp31 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | imp 123 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
3 | 2 | imp 123 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: imp41 351 imp5d 357 impl 378 anassrs 398 an31s 565 con4biddc 852 3imp 1188 3expa 1198 bilukdc 1391 reusv3 4445 dfimafn 5545 funimass4 5547 funimass3 5612 isopolem 5801 smores2 6273 tfrlem9 6298 nnmordi 6495 mulcanpig 7297 elnnz 9222 nzadd 9264 irradd 9605 irrmul 9606 uzsubsubfz 10003 fzo1fzo0n0 10139 elfzonelfzo 10186 infpnlem1 12311 tgcl 12858 |
Copyright terms: Public domain | W3C validator |