ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 124 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 124 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  859  3imp  1196  3expa  1206  bilukdc  1416  reusv3  4507  dfimafn  5627  funimass4  5629  funimass3  5696  isopolem  5891  smores2  6380  tfrlem9  6405  nnmordi  6602  mulcanpig  7448  elnnz  9382  nzadd  9425  irradd  9767  irrmul  9768  uzsubsubfz  10169  fzo1fzo0n0  10307  elincfzoext  10322  elfzonelfzo  10359  swrdwrdsymbg  11117  infpnlem1  12682  tgcl  14536
  Copyright terms: Public domain W3C validator