![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imp31 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | imp 122 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
3 | 2 | imp 122 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem is referenced by: imp41 345 imp5d 351 impl 372 anassrs 392 an31s 537 con4biddc 792 3imp 1137 3expa 1143 bilukdc 1332 reusv3 4282 dfimafn 5353 funimass4 5355 funimass3 5415 isopolem 5601 smores2 6059 tfrlem9 6084 nnmordi 6273 mulcanpig 6892 elnnz 8758 nzadd 8800 irradd 9129 irrmul 9130 uzsubsubfz 9459 fzo1fzo0n0 9590 elfzonelfzo 9637 |
Copyright terms: Public domain | W3C validator |