| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 859 3imp 1196 3expa 1206 bilukdc 1416 reusv3 4520 dfimafn 5645 funimass4 5647 funimass3 5714 isopolem 5909 smores2 6398 tfrlem9 6423 nnmordi 6620 mulcanpig 7478 elnnz 9412 nzadd 9455 irradd 9797 irrmul 9798 uzsubsubfz 10199 fzo1fzo0n0 10339 elincfzoext 10354 elfzonelfzo 10391 swrdwrdsymbg 11150 wrd2ind 11209 infpnlem1 12767 tgcl 14621 |
| Copyright terms: Public domain | W3C validator |