| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | 
| Ref | Expression | 
|---|---|
| imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | 
| 3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 858 3imp 1195 3expa 1205 bilukdc 1407 reusv3 4495 dfimafn 5609 funimass4 5611 funimass3 5678 isopolem 5869 smores2 6352 tfrlem9 6377 nnmordi 6574 mulcanpig 7402 elnnz 9336 nzadd 9378 irradd 9720 irrmul 9721 uzsubsubfz 10122 fzo1fzo0n0 10259 elfzonelfzo 10306 infpnlem1 12528 tgcl 14300 | 
| Copyright terms: Public domain | W3C validator |