ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 124 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 124 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  857  3imp  1193  3expa  1203  bilukdc  1396  reusv3  4461  dfimafn  5565  funimass4  5567  funimass3  5633  isopolem  5823  smores2  6295  tfrlem9  6320  nnmordi  6517  mulcanpig  7334  elnnz  9263  nzadd  9305  irradd  9646  irrmul  9647  uzsubsubfz  10047  fzo1fzo0n0  10183  elfzonelfzo  10230  infpnlem1  12357  tgcl  13567
  Copyright terms: Public domain W3C validator