Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imp31 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | imp 123 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
3 | 2 | imp 123 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: imp41 351 imp5d 357 impl 378 anassrs 398 an31s 560 con4biddc 847 3imp 1183 3expa 1193 bilukdc 1386 reusv3 4438 dfimafn 5535 funimass4 5537 funimass3 5601 isopolem 5790 smores2 6262 tfrlem9 6287 nnmordi 6484 mulcanpig 7276 elnnz 9201 nzadd 9243 irradd 9584 irrmul 9585 uzsubsubfz 9982 fzo1fzo0n0 10118 elfzonelfzo 10165 infpnlem1 12289 tgcl 12704 |
Copyright terms: Public domain | W3C validator |