Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imp31 | GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
Ref | Expression |
---|---|
imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
2 | 1 | imp 123 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
3 | 2 | imp 123 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem is referenced by: imp41 351 imp5d 357 impl 378 anassrs 398 an31s 560 con4biddc 843 3imp 1176 3expa 1185 bilukdc 1378 reusv3 4419 dfimafn 5516 funimass4 5518 funimass3 5582 isopolem 5769 smores2 6238 tfrlem9 6263 nnmordi 6460 mulcanpig 7249 elnnz 9171 nzadd 9213 irradd 9548 irrmul 9549 uzsubsubfz 9942 fzo1fzo0n0 10075 elfzonelfzo 10122 tgcl 12435 |
Copyright terms: Public domain | W3C validator |