| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 858 3imp 1195 3expa 1205 bilukdc 1407 reusv3 4496 dfimafn 5612 funimass4 5614 funimass3 5681 isopolem 5872 smores2 6361 tfrlem9 6386 nnmordi 6583 mulcanpig 7419 elnnz 9353 nzadd 9395 irradd 9737 irrmul 9738 uzsubsubfz 10139 fzo1fzo0n0 10276 elfzonelfzo 10323 infpnlem1 12553 tgcl 14384 |
| Copyright terms: Public domain | W3C validator |