| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 858 3imp 1195 3expa 1205 bilukdc 1415 reusv3 4506 dfimafn 5626 funimass4 5628 funimass3 5695 isopolem 5890 smores2 6379 tfrlem9 6404 nnmordi 6601 mulcanpig 7447 elnnz 9381 nzadd 9424 irradd 9766 irrmul 9767 uzsubsubfz 10168 fzo1fzo0n0 10305 elincfzoext 10320 elfzonelfzo 10357 infpnlem1 12653 tgcl 14507 |
| Copyright terms: Public domain | W3C validator |