ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 254
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 123 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 123 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem is referenced by:  imp41  351  imp5d  357  impl  378  anassrs  398  an31s  565  con4biddc  852  3imp  1188  3expa  1198  bilukdc  1391  reusv3  4445  dfimafn  5545  funimass4  5547  funimass3  5612  isopolem  5801  smores2  6273  tfrlem9  6298  nnmordi  6495  mulcanpig  7297  elnnz  9222  nzadd  9264  irradd  9605  irrmul  9606  uzsubsubfz  10003  fzo1fzo0n0  10139  elfzonelfzo  10186  infpnlem1  12311  tgcl  12858
  Copyright terms: Public domain W3C validator