ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 124 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 124 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  858  3imp  1195  3expa  1205  bilukdc  1407  reusv3  4496  dfimafn  5612  funimass4  5614  funimass3  5681  isopolem  5872  smores2  6361  tfrlem9  6386  nnmordi  6583  mulcanpig  7419  elnnz  9353  nzadd  9395  irradd  9737  irrmul  9738  uzsubsubfz  10139  fzo1fzo0n0  10276  elfzonelfzo  10323  infpnlem1  12553  tgcl  14384
  Copyright terms: Public domain W3C validator