| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| Ref | Expression |
|---|---|
| imp31 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | |
| 2 | 1 | imp 124 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
| 3 | 2 | imp 124 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem is referenced by: imp41 353 imp5d 359 impl 380 anassrs 400 an31s 570 con4biddc 862 3imp 1217 3expa 1227 bilukdc 1438 reusv3 4550 dfimafn 5681 funimass4 5683 funimass3 5750 isopolem 5945 smores2 6438 tfrlem9 6463 nnmordi 6660 mulcanpig 7518 elnnz 9452 nzadd 9495 irradd 9837 irrmul 9838 uzsubsubfz 10239 fzo1fzo0n0 10379 elincfzoext 10394 elfzonelfzo 10431 swrdwrdsymbg 11191 wrd2ind 11250 infpnlem1 12877 tgcl 14732 |
| Copyright terms: Public domain | W3C validator |