ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 124 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 124 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  858  3imp  1195  3expa  1205  bilukdc  1407  reusv3  4491  dfimafn  5605  funimass4  5607  funimass3  5674  isopolem  5865  smores2  6347  tfrlem9  6372  nnmordi  6569  mulcanpig  7395  elnnz  9327  nzadd  9369  irradd  9711  irrmul  9712  uzsubsubfz  10113  fzo1fzo0n0  10250  elfzonelfzo  10297  infpnlem1  12497  tgcl  14232
  Copyright terms: Public domain W3C validator