ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 256
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
imp31 (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
21imp 124 . 2 ((𝜑𝜓) → (𝜒𝜃))
32imp 124 1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem is referenced by:  imp41  353  imp5d  359  impl  380  anassrs  400  an31s  570  con4biddc  858  3imp  1195  3expa  1205  bilukdc  1407  reusv3  4495  dfimafn  5609  funimass4  5611  funimass3  5678  isopolem  5869  smores2  6352  tfrlem9  6377  nnmordi  6574  mulcanpig  7402  elnnz  9336  nzadd  9378  irradd  9720  irrmul  9721  uzsubsubfz  10122  fzo1fzo0n0  10259  elfzonelfzo  10306  infpnlem1  12528  tgcl  14300
  Copyright terms: Public domain W3C validator