| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca2 | GIF version | ||
| Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
| Ref | Expression |
|---|---|
| jca2.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jca2.2 | ⊢ (𝜓 → 𝜃) |
| Ref | Expression |
|---|---|
| jca2 | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca2.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jca2.2 | . . 3 ⊢ (𝜓 → 𝜃) | |
| 3 | 2 | a1i 9 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 1, 3 | jcad 307 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: ifnebibdc 3604 txcn 14511 |
| Copyright terms: Public domain | W3C validator |