| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > jca31 | GIF version | ||
| Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) | 
| Ref | Expression | 
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) | 
| jca31.2 | ⊢ (𝜑 → 𝜒) | 
| jca31.3 | ⊢ (𝜑 → 𝜃) | 
| Ref | Expression | 
|---|---|
| jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) | 
| 4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 | 
| This theorem is referenced by: 3jca 1179 syl21anbrc 1184 syl21anc 1248 f1oiso2 5874 exmidapne 7327 nnnq0lem1 7513 prmuloc 7633 suplocexprlemex 7789 prsrlem1 7809 apreap 8614 lemulge11 8893 elnnz 9336 supinfneg 9669 infsupneg 9670 leexp1a 10686 faclbnd6 10836 zfz1isolem1 10932 oddpwdclemdc 12341 ennnfonelemf1 12635 grpidinv2 13190 rhmopp 13732 dvdsrzring 14159 cncnp2m 14467 bj-charfun 15453 | 
| Copyright terms: Public domain | W3C validator |