| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca31 | GIF version | ||
| Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 3jca 1201 syl21anbrc 1206 syl21anc 1270 f1oiso2 5950 exmidapne 7442 nnnq0lem1 7629 prmuloc 7749 suplocexprlemex 7905 prsrlem1 7925 apreap 8730 lemulge11 9009 elnnz 9452 supinfneg 9786 infsupneg 9787 leexp1a 10811 faclbnd6 10961 zfz1isolem1 11057 oddpwdclemdc 12690 ennnfonelemf1 12984 grpidinv2 13586 rhmopp 14134 dvdsrzring 14561 cncnp2m 14899 upgrex 15897 uhgr2edg 15998 bj-charfun 16128 |
| Copyright terms: Public domain | W3C validator |