| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca31 | GIF version | ||
| Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 3jca 1179 syl21anbrc 1184 syl21anc 1248 f1oiso2 5886 exmidapne 7354 nnnq0lem1 7541 prmuloc 7661 suplocexprlemex 7817 prsrlem1 7837 apreap 8642 lemulge11 8921 elnnz 9364 supinfneg 9698 infsupneg 9699 leexp1a 10720 faclbnd6 10870 zfz1isolem1 10966 oddpwdclemdc 12414 ennnfonelemf1 12708 grpidinv2 13308 rhmopp 13856 dvdsrzring 14283 cncnp2m 14621 bj-charfun 15607 |
| Copyright terms: Public domain | W3C validator |