ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1179  syl21anbrc  1184  syl21anc  1248  f1oiso2  5877  exmidapne  7343  nnnq0lem1  7530  prmuloc  7650  suplocexprlemex  7806  prsrlem1  7826  apreap  8631  lemulge11  8910  elnnz  9353  supinfneg  9686  infsupneg  9687  leexp1a  10703  faclbnd6  10853  zfz1isolem1  10949  oddpwdclemdc  12366  ennnfonelemf1  12660  grpidinv2  13260  rhmopp  13808  dvdsrzring  14235  cncnp2m  14551  bj-charfun  15537
  Copyright terms: Public domain W3C validator