![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jca31 | GIF version |
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: 3jca 1177 syl21anbrc 1182 syl21anc 1237 f1oiso2 5830 exmidapne 7261 nnnq0lem1 7447 prmuloc 7567 suplocexprlemex 7723 prsrlem1 7743 apreap 8546 lemulge11 8825 elnnz 9265 supinfneg 9597 infsupneg 9598 leexp1a 10577 faclbnd6 10726 zfz1isolem1 10822 oddpwdclemdc 12175 ennnfonelemf1 12421 grpidinv2 12933 dvdsrzring 13578 cncnp2m 13816 bj-charfun 14644 |
Copyright terms: Public domain | W3C validator |