| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca31 | GIF version | ||
| Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 3jca 1179 syl21anbrc 1184 syl21anc 1248 f1oiso2 5895 exmidapne 7371 nnnq0lem1 7558 prmuloc 7678 suplocexprlemex 7834 prsrlem1 7854 apreap 8659 lemulge11 8938 elnnz 9381 supinfneg 9715 infsupneg 9716 leexp1a 10737 faclbnd6 10887 zfz1isolem1 10983 oddpwdclemdc 12437 ennnfonelemf1 12731 grpidinv2 13332 rhmopp 13880 dvdsrzring 14307 cncnp2m 14645 bj-charfun 15676 |
| Copyright terms: Public domain | W3C validator |