![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jca31 | GIF version |
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: 3jca 1179 syl21anbrc 1184 syl21anc 1248 f1oiso2 5871 exmidapne 7322 nnnq0lem1 7508 prmuloc 7628 suplocexprlemex 7784 prsrlem1 7804 apreap 8608 lemulge11 8887 elnnz 9330 supinfneg 9663 infsupneg 9664 leexp1a 10668 faclbnd6 10818 zfz1isolem1 10914 oddpwdclemdc 12314 ennnfonelemf1 12578 grpidinv2 13133 rhmopp 13675 dvdsrzring 14102 cncnp2m 14410 bj-charfun 15369 |
Copyright terms: Public domain | W3C validator |