Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jca31 | GIF version |
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | 3, 4 | jca 304 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: 3jca 1172 syl21anbrc 1177 syl21anc 1232 f1oiso2 5806 nnnq0lem1 7408 prmuloc 7528 suplocexprlemex 7684 prsrlem1 7704 apreap 8506 lemulge11 8782 elnnz 9222 supinfneg 9554 infsupneg 9555 leexp1a 10531 faclbnd6 10678 zfz1isolem1 10775 oddpwdclemdc 12127 ennnfonelemf1 12373 grpidinv2 12758 cncnp2m 13025 bj-charfun 13842 |
Copyright terms: Public domain | W3C validator |