Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jca31 | GIF version |
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
Ref | Expression |
---|---|
jca31.1 | ⊢ (𝜑 → 𝜓) |
jca31.2 | ⊢ (𝜑 → 𝜒) |
jca31.3 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 304 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | 3, 4 | jca 304 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: 3jca 1167 syl21anbrc 1172 syl21anc 1227 f1oiso2 5795 nnnq0lem1 7387 prmuloc 7507 suplocexprlemex 7663 prsrlem1 7683 apreap 8485 lemulge11 8761 elnnz 9201 supinfneg 9533 infsupneg 9534 leexp1a 10510 faclbnd6 10657 zfz1isolem1 10753 oddpwdclemdc 12105 ennnfonelemf1 12351 cncnp2m 12871 bj-charfun 13689 |
Copyright terms: Public domain | W3C validator |