| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jca31 | GIF version | ||
| Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.) |
| Ref | Expression |
|---|---|
| jca31.1 | ⊢ (𝜑 → 𝜓) |
| jca31.2 | ⊢ (𝜑 → 𝜒) |
| jca31.3 | ⊢ (𝜑 → 𝜃) |
| Ref | Expression |
|---|---|
| jca31 | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jca31.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | jca31.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 306 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | jca31.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | 3, 4 | jca 306 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: 3jca 1180 syl21anbrc 1185 syl21anc 1249 f1oiso2 5909 exmidapne 7392 nnnq0lem1 7579 prmuloc 7699 suplocexprlemex 7855 prsrlem1 7875 apreap 8680 lemulge11 8959 elnnz 9402 supinfneg 9736 infsupneg 9737 leexp1a 10761 faclbnd6 10911 zfz1isolem1 11007 oddpwdclemdc 12570 ennnfonelemf1 12864 grpidinv2 13465 rhmopp 14013 dvdsrzring 14440 cncnp2m 14778 upgrex 15774 bj-charfun 15881 |
| Copyright terms: Public domain | W3C validator |