ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1180  syl21anbrc  1185  syl21anc  1249  f1oiso2  5909  exmidapne  7392  nnnq0lem1  7579  prmuloc  7699  suplocexprlemex  7855  prsrlem1  7875  apreap  8680  lemulge11  8959  elnnz  9402  supinfneg  9736  infsupneg  9737  leexp1a  10761  faclbnd6  10911  zfz1isolem1  11007  oddpwdclemdc  12570  ennnfonelemf1  12864  grpidinv2  13465  rhmopp  14013  dvdsrzring  14440  cncnp2m  14778  upgrex  15774  bj-charfun  15881
  Copyright terms: Public domain W3C validator