ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1179  syl21anbrc  1184  syl21anc  1248  f1oiso2  5895  exmidapne  7371  nnnq0lem1  7558  prmuloc  7678  suplocexprlemex  7834  prsrlem1  7854  apreap  8659  lemulge11  8938  elnnz  9381  supinfneg  9715  infsupneg  9716  leexp1a  10737  faclbnd6  10887  zfz1isolem1  10983  oddpwdclemdc  12437  ennnfonelemf1  12731  grpidinv2  13332  rhmopp  13880  dvdsrzring  14307  cncnp2m  14645  bj-charfun  15676
  Copyright terms: Public domain W3C validator