ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1179  syl21anbrc  1184  syl21anc  1248  f1oiso2  5886  exmidapne  7354  nnnq0lem1  7541  prmuloc  7661  suplocexprlemex  7817  prsrlem1  7837  apreap  8642  lemulge11  8921  elnnz  9364  supinfneg  9698  infsupneg  9699  leexp1a  10720  faclbnd6  10870  zfz1isolem1  10966  oddpwdclemdc  12414  ennnfonelemf1  12708  grpidinv2  13308  rhmopp  13856  dvdsrzring  14283  cncnp2m  14621  bj-charfun  15607
  Copyright terms: Public domain W3C validator