ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1201  syl21anbrc  1206  syl21anc  1270  f1oiso2  5950  exmidapne  7442  nnnq0lem1  7629  prmuloc  7749  suplocexprlemex  7905  prsrlem1  7925  apreap  8730  lemulge11  9009  elnnz  9452  supinfneg  9786  infsupneg  9787  leexp1a  10811  faclbnd6  10961  zfz1isolem1  11057  oddpwdclemdc  12690  ennnfonelemf1  12984  grpidinv2  13586  rhmopp  14134  dvdsrzring  14561  cncnp2m  14899  upgrex  15897  uhgr2edg  15998  bj-charfun  16128
  Copyright terms: Public domain W3C validator