ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca31 GIF version

Theorem jca31 309
Description: Join three consequents. (Contributed by Jeff Hankins, 1-Aug-2009.)
Hypotheses
Ref Expression
jca31.1 (𝜑𝜓)
jca31.2 (𝜑𝜒)
jca31.3 (𝜑𝜃)
Assertion
Ref Expression
jca31 (𝜑 → ((𝜓𝜒) ∧ 𝜃))

Proof of Theorem jca31
StepHypRef Expression
1 jca31.1 . . 3 (𝜑𝜓)
2 jca31.2 . . 3 (𝜑𝜒)
31, 2jca 306 . 2 (𝜑 → (𝜓𝜒))
4 jca31.3 . 2 (𝜑𝜃)
53, 4jca 306 1 (𝜑 → ((𝜓𝜒) ∧ 𝜃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 108
This theorem is referenced by:  3jca  1179  syl21anbrc  1184  syl21anc  1248  f1oiso2  5874  exmidapne  7327  nnnq0lem1  7513  prmuloc  7633  suplocexprlemex  7789  prsrlem1  7809  apreap  8614  lemulge11  8893  elnnz  9336  supinfneg  9669  infsupneg  9670  leexp1a  10686  faclbnd6  10836  zfz1isolem1  10932  oddpwdclemdc  12341  ennnfonelemf1  12635  grpidinv2  13190  rhmopp  13732  dvdsrzring  14159  cncnp2m  14467  bj-charfun  15453
  Copyright terms: Public domain W3C validator