ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jca2 Unicode version

Theorem jca2 306
Description: Inference conjoining the consequents of two implications. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Hypotheses
Ref Expression
jca2.1  |-  ( ph  ->  ( ps  ->  ch ) )
jca2.2  |-  ( ps 
->  th )
Assertion
Ref Expression
jca2  |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )

Proof of Theorem jca2
StepHypRef Expression
1 jca2.1 . 2  |-  ( ph  ->  ( ps  ->  ch ) )
2 jca2.2 . . 3  |-  ( ps 
->  th )
32a1i 9 . 2  |-  ( ph  ->  ( ps  ->  th )
)
41, 3jcad 305 1  |-  ( ph  ->  ( ps  ->  ( ch  /\  th ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  txcn  12915
  Copyright terms: Public domain W3C validator