Step | Hyp | Ref
| Expression |
1 | | txcn.1 |
. . . . 5
⊢ 𝑋 = ∪
𝑅 |
2 | 1 | toptopon 12810 |
. . . 4
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
3 | | txcn.2 |
. . . . 5
⊢ 𝑌 = ∪
𝑆 |
4 | 3 | toptopon 12810 |
. . . 4
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
5 | | txcn.5 |
. . . . . . 7
⊢ 𝑃 = (1st ↾ 𝑍) |
6 | | txcn.3 |
. . . . . . . 8
⊢ 𝑍 = (𝑋 × 𝑌) |
7 | 6 | reseq2i 4888 |
. . . . . . 7
⊢
(1st ↾ 𝑍) = (1st ↾ (𝑋 × 𝑌)) |
8 | 5, 7 | eqtri 2191 |
. . . . . 6
⊢ 𝑃 = (1st ↾
(𝑋 × 𝑌)) |
9 | | tx1cn 13063 |
. . . . . 6
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
10 | 8, 9 | eqeltrid 2257 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
11 | | txcn.6 |
. . . . . . 7
⊢ 𝑄 = (2nd ↾ 𝑍) |
12 | 6 | reseq2i 4888 |
. . . . . . 7
⊢
(2nd ↾ 𝑍) = (2nd ↾ (𝑋 × 𝑌)) |
13 | 11, 12 | eqtri 2191 |
. . . . . 6
⊢ 𝑄 = (2nd ↾
(𝑋 × 𝑌)) |
14 | | tx2cn 13064 |
. . . . . 6
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
15 | 13, 14 | eqeltrid 2257 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
16 | | cnco 13015 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → (𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅)) |
17 | | cnco 13015 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) |
18 | 16, 17 | anim12dan 595 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ (𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) |
19 | 18 | expcom 115 |
. . . . 5
⊢ ((𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
20 | 10, 15, 19 | syl2anc 409 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
21 | 2, 4, 20 | syl2anb 289 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
22 | 21 | 3adant3 1012 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
23 | | cntop1 12995 |
. . . . . . . 8
⊢ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top) |
24 | 23 | ad2antrl 487 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑈 ∈ Top) |
25 | | txcn.4 |
. . . . . . . 8
⊢ 𝑊 = ∪
𝑈 |
26 | 25 | topopn 12800 |
. . . . . . 7
⊢ (𝑈 ∈ Top → 𝑊 ∈ 𝑈) |
27 | 24, 26 | syl 14 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑊 ∈ 𝑈) |
28 | 25, 1 | cnf 12998 |
. . . . . . 7
⊢ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) → (𝑃 ∘ 𝐹):𝑊⟶𝑋) |
29 | 28 | ad2antrl 487 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑃 ∘ 𝐹):𝑊⟶𝑋) |
30 | 25, 3 | cnf 12998 |
. . . . . . 7
⊢ ((𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆) → (𝑄 ∘ 𝐹):𝑊⟶𝑌) |
31 | 30 | ad2antll 488 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑄 ∘ 𝐹):𝑊⟶𝑌) |
32 | 8, 13 | upxp 13066 |
. . . . . . 7
⊢ ((𝑊 ∈ 𝑈 ∧ (𝑃 ∘ 𝐹):𝑊⟶𝑋 ∧ (𝑄 ∘ 𝐹):𝑊⟶𝑌) → ∃!ℎ(ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
33 | | feq3 5332 |
. . . . . . . . . 10
⊢ (𝑍 = (𝑋 × 𝑌) → (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶(𝑋 × 𝑌))) |
34 | 6, 33 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶(𝑋 × 𝑌)) |
35 | 34 | 3anbi1i 1185 |
. . . . . . . 8
⊢ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ (ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
36 | 35 | eubii 2028 |
. . . . . . 7
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
37 | 32, 36 | sylibr 133 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑈 ∧ (𝑃 ∘ 𝐹):𝑊⟶𝑋 ∧ (𝑄 ∘ 𝐹):𝑊⟶𝑌) → ∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
38 | 27, 29, 31, 37 | syl3anc 1233 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
39 | | euex 2049 |
. . . . 5
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
40 | 38, 39 | syl 14 |
. . . 4
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
41 | | simpll3 1033 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹:𝑊⟶𝑍) |
42 | 27 | adantr 274 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝑊 ∈ 𝑈) |
43 | 1 | topopn 12800 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Top → 𝑋 ∈ 𝑅) |
44 | 3 | topopn 12800 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Top → 𝑌 ∈ 𝑆) |
45 | | xpexg 4725 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆) → (𝑋 × 𝑌) ∈ V) |
46 | 6, 45 | eqeltrid 2257 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆) → 𝑍 ∈ V) |
47 | 43, 44, 46 | syl2an 287 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 ∈ V) |
48 | 47 | 3adant3 1012 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → 𝑍 ∈ V) |
49 | 48 | ad2antrr 485 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝑍 ∈ V) |
50 | | fex2 5366 |
. . . . . . 7
⊢ ((𝐹:𝑊⟶𝑍 ∧ 𝑊 ∈ 𝑈 ∧ 𝑍 ∈ V) → 𝐹 ∈ V) |
51 | 41, 42, 49, 50 | syl3anc 1233 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹 ∈ V) |
52 | | eumo 2051 |
. . . . . . . 8
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
53 | 38, 52 | syl 14 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
54 | 53 | adantr 274 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
55 | | simpr 109 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
56 | | 3anass 977 |
. . . . . . . 8
⊢ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
57 | | coeq2 4769 |
. . . . . . . . . . . 12
⊢ (𝐹 = ℎ → (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ)) |
58 | | coeq2 4769 |
. . . . . . . . . . . 12
⊢ (𝐹 = ℎ → (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) |
59 | 57, 58 | jca 304 |
. . . . . . . . . . 11
⊢ (𝐹 = ℎ → ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
60 | 59 | eqcoms 2173 |
. . . . . . . . . 10
⊢ (ℎ = 𝐹 → ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
61 | 60 | biantrud 302 |
. . . . . . . . 9
⊢ (ℎ = 𝐹 → (ℎ:𝑊⟶𝑍 ↔ (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))))) |
62 | | feq1 5330 |
. . . . . . . . 9
⊢ (ℎ = 𝐹 → (ℎ:𝑊⟶𝑍 ↔ 𝐹:𝑊⟶𝑍)) |
63 | 61, 62 | bitr3d 189 |
. . . . . . . 8
⊢ (ℎ = 𝐹 → ((ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) ↔ 𝐹:𝑊⟶𝑍)) |
64 | 56, 63 | syl5bb 191 |
. . . . . . 7
⊢ (ℎ = 𝐹 → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ 𝐹:𝑊⟶𝑍)) |
65 | 64 | moi2 2911 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) ∧ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ 𝐹:𝑊⟶𝑍)) → ℎ = 𝐹) |
66 | 51, 54, 55, 41, 65 | syl22anc 1234 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ = 𝐹) |
67 | | eqid 2170 |
. . . . . . . . . 10
⊢ (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆) |
68 | 67, 1, 3, 6, 5, 11 | uptx 13068 |
. . . . . . . . 9
⊢ (((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
69 | 68 | adantl 275 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
70 | | df-reu 2455 |
. . . . . . . . . 10
⊢
(∃!ℎ ∈
(𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
71 | | euex 2049 |
. . . . . . . . . 10
⊢
(∃!ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
72 | 70, 71 | sylbi 120 |
. . . . . . . . 9
⊢
(∃!ℎ ∈
(𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
73 | | eqid 2170 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
74 | 25, 73 | cnf 12998 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ℎ:𝑊⟶∪ (𝑅 ×t 𝑆)) |
75 | 1, 3 | txuni 13057 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
76 | 6, 75 | eqtrid 2215 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 = ∪
(𝑅 ×t
𝑆)) |
77 | 76 | 3adant3 1012 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → 𝑍 = ∪ (𝑅 ×t 𝑆)) |
78 | 77 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑍 = ∪ (𝑅 ×t 𝑆)) |
79 | 78 | feq3d 5336 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶∪ (𝑅 ×t 𝑆))) |
80 | 74, 79 | syl5ibr 155 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ℎ:𝑊⟶𝑍)) |
81 | 80 | anim1d 334 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))))) |
82 | 81, 56 | syl6ibr 161 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
83 | | simpl 108 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
84 | 82, 83 | jca2 306 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
85 | 84 | eximdv 1873 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
86 | 72, 85 | syl5 32 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
87 | 69, 86 | mpd 13 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
88 | | eupick 2098 |
. . . . . . 7
⊢
((∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
89 | 38, 87, 88 | syl2anc 409 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
90 | 89 | imp 123 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
91 | 66, 90 | eqeltrrd 2248 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
92 | 40, 91 | exlimddv 1891 |
. . 3
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
93 | 92 | ex 114 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
94 | 22, 93 | impbid 128 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |