| Step | Hyp | Ref
| Expression |
| 1 | | txcn.1 |
. . . . 5
⊢ 𝑋 = ∪
𝑅 |
| 2 | 1 | toptopon 14338 |
. . . 4
⊢ (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋)) |
| 3 | | txcn.2 |
. . . . 5
⊢ 𝑌 = ∪
𝑆 |
| 4 | 3 | toptopon 14338 |
. . . 4
⊢ (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘𝑌)) |
| 5 | | txcn.5 |
. . . . . . 7
⊢ 𝑃 = (1st ↾ 𝑍) |
| 6 | | txcn.3 |
. . . . . . . 8
⊢ 𝑍 = (𝑋 × 𝑌) |
| 7 | 6 | reseq2i 4944 |
. . . . . . 7
⊢
(1st ↾ 𝑍) = (1st ↾ (𝑋 × 𝑌)) |
| 8 | 5, 7 | eqtri 2217 |
. . . . . 6
⊢ 𝑃 = (1st ↾
(𝑋 × 𝑌)) |
| 9 | | tx1cn 14589 |
. . . . . 6
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| 10 | 8, 9 | eqeltrid 2283 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| 11 | | txcn.6 |
. . . . . . 7
⊢ 𝑄 = (2nd ↾ 𝑍) |
| 12 | 6 | reseq2i 4944 |
. . . . . . 7
⊢
(2nd ↾ 𝑍) = (2nd ↾ (𝑋 × 𝑌)) |
| 13 | 11, 12 | eqtri 2217 |
. . . . . 6
⊢ 𝑄 = (2nd ↾
(𝑋 × 𝑌)) |
| 14 | | tx2cn 14590 |
. . . . . 6
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| 15 | 13, 14 | eqeltrid 2283 |
. . . . 5
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| 16 | | cnco 14541 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) → (𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅)) |
| 17 | | cnco 14541 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) |
| 18 | 16, 17 | anim12dan 600 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ (𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆))) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) |
| 19 | 18 | expcom 116 |
. . . . 5
⊢ ((𝑃 ∈ ((𝑅 ×t 𝑆) Cn 𝑅) ∧ 𝑄 ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
| 20 | 10, 15, 19 | syl2anc 411 |
. . . 4
⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
| 21 | 2, 4, 20 | syl2anb 291 |
. . 3
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
| 22 | 21 | 3adant3 1019 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
| 23 | | cntop1 14521 |
. . . . . . . 8
⊢ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) → 𝑈 ∈ Top) |
| 24 | 23 | ad2antrl 490 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑈 ∈ Top) |
| 25 | | txcn.4 |
. . . . . . . 8
⊢ 𝑊 = ∪
𝑈 |
| 26 | 25 | topopn 14328 |
. . . . . . 7
⊢ (𝑈 ∈ Top → 𝑊 ∈ 𝑈) |
| 27 | 24, 26 | syl 14 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑊 ∈ 𝑈) |
| 28 | 25, 1 | cnf 14524 |
. . . . . . 7
⊢ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) → (𝑃 ∘ 𝐹):𝑊⟶𝑋) |
| 29 | 28 | ad2antrl 490 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑃 ∘ 𝐹):𝑊⟶𝑋) |
| 30 | 25, 3 | cnf 14524 |
. . . . . . 7
⊢ ((𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆) → (𝑄 ∘ 𝐹):𝑊⟶𝑌) |
| 31 | 30 | ad2antll 491 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (𝑄 ∘ 𝐹):𝑊⟶𝑌) |
| 32 | 8, 13 | upxp 14592 |
. . . . . . 7
⊢ ((𝑊 ∈ 𝑈 ∧ (𝑃 ∘ 𝐹):𝑊⟶𝑋 ∧ (𝑄 ∘ 𝐹):𝑊⟶𝑌) → ∃!ℎ(ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 33 | | feq3 5395 |
. . . . . . . . . 10
⊢ (𝑍 = (𝑋 × 𝑌) → (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶(𝑋 × 𝑌))) |
| 34 | 6, 33 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶(𝑋 × 𝑌)) |
| 35 | 34 | 3anbi1i 1192 |
. . . . . . . 8
⊢ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ (ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 36 | 35 | eubii 2054 |
. . . . . . 7
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ:𝑊⟶(𝑋 × 𝑌) ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 37 | 32, 36 | sylibr 134 |
. . . . . 6
⊢ ((𝑊 ∈ 𝑈 ∧ (𝑃 ∘ 𝐹):𝑊⟶𝑋 ∧ (𝑄 ∘ 𝐹):𝑊⟶𝑌) → ∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 38 | 27, 29, 31, 37 | syl3anc 1249 |
. . . . 5
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 39 | | euex 2075 |
. . . . 5
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 40 | 38, 39 | syl 14 |
. . . 4
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 41 | | simpll3 1040 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹:𝑊⟶𝑍) |
| 42 | 27 | adantr 276 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝑊 ∈ 𝑈) |
| 43 | 1 | topopn 14328 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Top → 𝑋 ∈ 𝑅) |
| 44 | 3 | topopn 14328 |
. . . . . . . . . 10
⊢ (𝑆 ∈ Top → 𝑌 ∈ 𝑆) |
| 45 | | xpexg 4778 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆) → (𝑋 × 𝑌) ∈ V) |
| 46 | 6, 45 | eqeltrid 2283 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ 𝑅 ∧ 𝑌 ∈ 𝑆) → 𝑍 ∈ V) |
| 47 | 43, 44, 46 | syl2an 289 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 ∈ V) |
| 48 | 47 | 3adant3 1019 |
. . . . . . . 8
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → 𝑍 ∈ V) |
| 49 | 48 | ad2antrr 488 |
. . . . . . 7
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝑍 ∈ V) |
| 50 | | fex2 5429 |
. . . . . . 7
⊢ ((𝐹:𝑊⟶𝑍 ∧ 𝑊 ∈ 𝑈 ∧ 𝑍 ∈ V) → 𝐹 ∈ V) |
| 51 | 41, 42, 49, 50 | syl3anc 1249 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹 ∈ V) |
| 52 | | eumo 2077 |
. . . . . . . 8
⊢
(∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 53 | 38, 52 | syl 14 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 54 | 53 | adantr 276 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 55 | | simpr 110 |
. . . . . 6
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 56 | | 3anass 984 |
. . . . . . . 8
⊢ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
| 57 | | coeq2 4825 |
. . . . . . . . . . . 12
⊢ (𝐹 = ℎ → (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ)) |
| 58 | | coeq2 4825 |
. . . . . . . . . . . 12
⊢ (𝐹 = ℎ → (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) |
| 59 | 57, 58 | jca 306 |
. . . . . . . . . . 11
⊢ (𝐹 = ℎ → ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 60 | 59 | eqcoms 2199 |
. . . . . . . . . 10
⊢ (ℎ = 𝐹 → ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 61 | 60 | biantrud 304 |
. . . . . . . . 9
⊢ (ℎ = 𝐹 → (ℎ:𝑊⟶𝑍 ↔ (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))))) |
| 62 | | feq1 5393 |
. . . . . . . . 9
⊢ (ℎ = 𝐹 → (ℎ:𝑊⟶𝑍 ↔ 𝐹:𝑊⟶𝑍)) |
| 63 | 61, 62 | bitr3d 190 |
. . . . . . . 8
⊢ (ℎ = 𝐹 → ((ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) ↔ 𝐹:𝑊⟶𝑍)) |
| 64 | 56, 63 | bitrid 192 |
. . . . . . 7
⊢ (ℎ = 𝐹 → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ 𝐹:𝑊⟶𝑍)) |
| 65 | 64 | moi2 2945 |
. . . . . 6
⊢ (((𝐹 ∈ V ∧ ∃*ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) ∧ ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ 𝐹:𝑊⟶𝑍)) → ℎ = 𝐹) |
| 66 | 51, 54, 55, 41, 65 | syl22anc 1250 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ = 𝐹) |
| 67 | | eqid 2196 |
. . . . . . . . . 10
⊢ (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆) |
| 68 | 67, 1, 3, 6, 5, 11 | uptx 14594 |
. . . . . . . . 9
⊢ (((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 69 | 68 | adantl 277 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) |
| 70 | | df-reu 2482 |
. . . . . . . . . 10
⊢
(∃!ℎ ∈
(𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ↔ ∃!ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
| 71 | | euex 2075 |
. . . . . . . . . 10
⊢
(∃!ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
| 72 | 70, 71 | sylbi 121 |
. . . . . . . . 9
⊢
(∃!ℎ ∈
(𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
| 73 | | eqid 2196 |
. . . . . . . . . . . . . . 15
⊢ ∪ (𝑅
×t 𝑆) =
∪ (𝑅 ×t 𝑆) |
| 74 | 25, 73 | cnf 14524 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ℎ:𝑊⟶∪ (𝑅 ×t 𝑆)) |
| 75 | 1, 3 | txuni 14583 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| 76 | 6, 75 | eqtrid 2241 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑍 = ∪
(𝑅 ×t
𝑆)) |
| 77 | 76 | 3adant3 1019 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → 𝑍 = ∪ (𝑅 ×t 𝑆)) |
| 78 | 77 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝑍 = ∪ (𝑅 ×t 𝑆)) |
| 79 | 78 | feq3d 5399 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (ℎ:𝑊⟶𝑍 ↔ ℎ:𝑊⟶∪ (𝑅 ×t 𝑆))) |
| 80 | 74, 79 | imbitrrid 156 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) → ℎ:𝑊⟶𝑍)) |
| 81 | 80 | anim1d 336 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))))) |
| 82 | 81, 56 | imbitrrdi 162 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)))) |
| 83 | | simpl 109 |
. . . . . . . . . . 11
⊢ ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
| 84 | 82, 83 | jca2 308 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
| 85 | 84 | eximdv 1894 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (∃ℎ(ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ∧ ((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
| 86 | 72, 85 | syl5 32 |
. . . . . . . 8
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → (∃!ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))((𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))))) |
| 87 | 69, 86 | mpd 13 |
. . . . . . 7
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
| 88 | | eupick 2124 |
. . . . . . 7
⊢
((∃!ℎ(ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ∃ℎ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) ∧ ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
| 89 | 38, 87, 88 | syl2anc 411 |
. . . . . 6
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → ((ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ)) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
| 90 | 89 | imp 124 |
. . . . 5
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → ℎ ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
| 91 | 66, 90 | eqeltrrd 2274 |
. . . 4
⊢ ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) ∧ (ℎ:𝑊⟶𝑍 ∧ (𝑃 ∘ 𝐹) = (𝑃 ∘ ℎ) ∧ (𝑄 ∘ 𝐹) = (𝑄 ∘ ℎ))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
| 92 | 40, 91 | exlimddv 1913 |
. . 3
⊢ (((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) ∧ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆))) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
| 93 | 92 | ex 115 |
. 2
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)) → 𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)))) |
| 94 | 22, 93 | impbid 129 |
1
⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |