| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | GIF version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
| 4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1752 equsexd 1753 rexim 2601 rr19.28v 2915 sotricim 4375 sotritrieq 4377 ordsucss 4557 ordpwsucss 4620 peano5 4651 iss 5011 funssres 5319 ssimaex 5650 elpreima 5709 resflem 5754 tposfo2 6363 nnmord 6613 map0g 6785 mapsn 6787 enq0tr 7560 addnqprl 7655 addnqpru 7656 cauappcvgprlemdisj 7777 lttri3 8165 ltleap 8718 mulgt1 8949 nominpos 9288 uzind 9497 indstr 9727 eqreznegel 9748 shftuz 11178 caucvgrelemcau 11341 sqrtsq 11405 mulcn2 11673 dvdsgcdb 12384 algcvgblem 12421 lcmdvdsb 12456 rpexp 12525 infpnlem1 12732 imasring 13876 unitmulclb 13926 cnntr 14747 cnrest2 14758 txlm 14801 metrest 15028 bj-om 15987 |
| Copyright terms: Public domain | W3C validator |