| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | GIF version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
| 4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1774 equsexd 1775 rexim 2624 rr19.28v 2943 sotricim 4411 sotritrieq 4413 ordsucss 4593 ordpwsucss 4656 peano5 4687 iss 5047 funssres 5356 ssimaex 5688 elpreima 5747 resflem 5792 tposfo2 6403 nnmord 6653 map0g 6825 mapsn 6827 enq0tr 7609 addnqprl 7704 addnqpru 7705 cauappcvgprlemdisj 7826 lttri3 8214 ltleap 8767 mulgt1 8998 nominpos 9337 uzind 9546 indstr 9776 eqreznegel 9797 ccatopth 11234 shftuz 11314 caucvgrelemcau 11477 sqrtsq 11541 mulcn2 11809 dvdsgcdb 12520 algcvgblem 12557 lcmdvdsb 12592 rpexp 12661 infpnlem1 12868 imasring 14013 unitmulclb 14063 cnntr 14884 cnrest2 14895 txlm 14938 metrest 15165 bj-om 16230 |
| Copyright terms: Public domain | W3C validator |