![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 138 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 107 |
This theorem is referenced by: jctild 310 jctird 311 ancld 319 ancrd 320 anim12ii 336 equsex 1664 equsexd 1665 rexim 2468 rr19.28v 2757 sotricim 4159 sotritrieq 4161 ordsucss 4334 ordpwsucss 4396 peano5 4426 iss 4771 funssres 5069 ssimaex 5378 elpreima 5432 resflem 5476 tposfo2 6046 nnmord 6290 map0g 6459 mapsn 6461 enq0tr 7047 addnqprl 7142 addnqpru 7143 cauappcvgprlemdisj 7264 lttri3 7619 ltleap 8161 mulgt1 8378 nominpos 8707 uzind 8911 indstr 9135 eqreznegel 9153 shftuz 10305 caucvgrelemcau 10467 sqrtsq 10531 mulcn2 10755 dvdsgcdb 11334 algcvgblem 11363 lcmdvdsb 11398 rpexp 11464 bj-om 12098 |
Copyright terms: Public domain | W3C validator |