Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 138 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jca2 306 jctild 314 jctird 315 ancld 323 ancrd 324 anim12ii 341 equsex 1716 equsexd 1717 rexim 2560 rr19.28v 2866 sotricim 4301 sotritrieq 4303 ordsucss 4481 ordpwsucss 4544 peano5 4575 iss 4930 funssres 5230 ssimaex 5547 elpreima 5604 resflem 5649 tposfo2 6235 nnmord 6485 map0g 6654 mapsn 6656 enq0tr 7375 addnqprl 7470 addnqpru 7471 cauappcvgprlemdisj 7592 lttri3 7978 ltleap 8530 mulgt1 8758 nominpos 9094 uzind 9302 indstr 9531 eqreznegel 9552 shftuz 10759 caucvgrelemcau 10922 sqrtsq 10986 mulcn2 11253 dvdsgcdb 11946 algcvgblem 11981 lcmdvdsb 12016 rpexp 12085 infpnlem1 12289 cnntr 12865 cnrest2 12876 txlm 12919 metrest 13146 bj-om 13819 |
Copyright terms: Public domain | W3C validator |