| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | GIF version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
| 4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1742 equsexd 1743 rexim 2591 rr19.28v 2904 sotricim 4358 sotritrieq 4360 ordsucss 4540 ordpwsucss 4603 peano5 4634 iss 4992 funssres 5300 ssimaex 5622 elpreima 5681 resflem 5726 tposfo2 6325 nnmord 6575 map0g 6747 mapsn 6749 enq0tr 7501 addnqprl 7596 addnqpru 7597 cauappcvgprlemdisj 7718 lttri3 8106 ltleap 8659 mulgt1 8890 nominpos 9229 uzind 9437 indstr 9667 eqreznegel 9688 shftuz 10982 caucvgrelemcau 11145 sqrtsq 11209 mulcn2 11477 dvdsgcdb 12180 algcvgblem 12217 lcmdvdsb 12252 rpexp 12321 infpnlem1 12528 imasring 13620 unitmulclb 13670 cnntr 14461 cnrest2 14472 txlm 14515 metrest 14742 bj-om 15583 |
| Copyright terms: Public domain | W3C validator |