![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1728 equsexd 1729 rexim 2571 rr19.28v 2878 sotricim 4324 sotritrieq 4326 ordsucss 4504 ordpwsucss 4567 peano5 4598 iss 4954 funssres 5259 ssimaex 5578 elpreima 5636 resflem 5681 tposfo2 6268 nnmord 6518 map0g 6688 mapsn 6690 enq0tr 7433 addnqprl 7528 addnqpru 7529 cauappcvgprlemdisj 7650 lttri3 8037 ltleap 8589 mulgt1 8820 nominpos 9156 uzind 9364 indstr 9593 eqreznegel 9614 shftuz 10826 caucvgrelemcau 10989 sqrtsq 11053 mulcn2 11320 dvdsgcdb 12014 algcvgblem 12049 lcmdvdsb 12084 rpexp 12153 infpnlem1 12357 unitmulclb 13283 cnntr 13728 cnrest2 13739 txlm 13782 metrest 14009 bj-om 14692 |
Copyright terms: Public domain | W3C validator |