![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1739 equsexd 1740 rexim 2588 rr19.28v 2900 sotricim 4354 sotritrieq 4356 ordsucss 4536 ordpwsucss 4599 peano5 4630 iss 4988 funssres 5296 ssimaex 5618 elpreima 5677 resflem 5722 tposfo2 6320 nnmord 6570 map0g 6742 mapsn 6744 enq0tr 7494 addnqprl 7589 addnqpru 7590 cauappcvgprlemdisj 7711 lttri3 8099 ltleap 8651 mulgt1 8882 nominpos 9220 uzind 9428 indstr 9658 eqreznegel 9679 shftuz 10961 caucvgrelemcau 11124 sqrtsq 11188 mulcn2 11455 dvdsgcdb 12150 algcvgblem 12187 lcmdvdsb 12222 rpexp 12291 infpnlem1 12497 imasring 13560 unitmulclb 13610 cnntr 14393 cnrest2 14404 txlm 14447 metrest 14674 bj-om 15429 |
Copyright terms: Public domain | W3C validator |