| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | GIF version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
| 4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1742 equsexd 1743 rexim 2591 rr19.28v 2904 sotricim 4359 sotritrieq 4361 ordsucss 4541 ordpwsucss 4604 peano5 4635 iss 4993 funssres 5301 ssimaex 5625 elpreima 5684 resflem 5729 tposfo2 6334 nnmord 6584 map0g 6756 mapsn 6758 enq0tr 7520 addnqprl 7615 addnqpru 7616 cauappcvgprlemdisj 7737 lttri3 8125 ltleap 8678 mulgt1 8909 nominpos 9248 uzind 9456 indstr 9686 eqreznegel 9707 shftuz 11001 caucvgrelemcau 11164 sqrtsq 11228 mulcn2 11496 dvdsgcdb 12207 algcvgblem 12244 lcmdvdsb 12279 rpexp 12348 infpnlem1 12555 imasring 13698 unitmulclb 13748 cnntr 14569 cnrest2 14580 txlm 14623 metrest 14850 bj-om 15691 |
| Copyright terms: Public domain | W3C validator |