| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > jcad | GIF version | ||
| Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
| Ref | Expression |
|---|---|
| jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Ref | Expression |
|---|---|
| jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
| 3 | pm3.2 139 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
| 4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 108 |
| This theorem is referenced by: jca2 308 jctild 316 jctird 317 ancld 325 ancrd 326 anim12ii 343 equsex 1774 equsexd 1775 rexim 2624 rr19.28v 2943 sotricim 4414 sotritrieq 4416 ordsucss 4596 ordpwsucss 4659 peano5 4690 iss 5051 funssres 5360 ssimaex 5697 elpreima 5756 resflem 5801 tposfo2 6419 nnmord 6671 map0g 6843 mapsn 6845 enq0tr 7629 addnqprl 7724 addnqpru 7725 cauappcvgprlemdisj 7846 lttri3 8234 ltleap 8787 mulgt1 9018 nominpos 9357 uzind 9566 indstr 9796 eqreznegel 9817 ccatopth 11256 shftuz 11336 caucvgrelemcau 11499 sqrtsq 11563 mulcn2 11831 dvdsgcdb 12542 algcvgblem 12579 lcmdvdsb 12614 rpexp 12683 infpnlem1 12890 imasring 14035 unitmulclb 14086 cnntr 14907 cnrest2 14918 txlm 14961 metrest 15188 uspgr2wlkeq 16086 bj-om 16324 |
| Copyright terms: Public domain | W3C validator |