Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > jcad | GIF version |
Description: Deduction conjoining the consequents of two implications. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 23-Jul-2013.) |
Ref | Expression |
---|---|
jcad.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jcad.2 | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Ref | Expression |
---|---|
jcad | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jcad.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jcad.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) | |
3 | pm3.2 138 | . 2 ⊢ (𝜒 → (𝜃 → (𝜒 ∧ 𝜃))) | |
4 | 1, 2, 3 | syl6c 66 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia3 107 |
This theorem is referenced by: jca2 306 jctild 314 jctird 315 ancld 323 ancrd 324 anim12ii 341 equsex 1708 equsexd 1709 rexim 2551 rr19.28v 2852 sotricim 4282 sotritrieq 4284 ordsucss 4461 ordpwsucss 4524 peano5 4555 iss 4909 funssres 5209 ssimaex 5526 elpreima 5583 resflem 5628 tposfo2 6208 nnmord 6457 map0g 6626 mapsn 6628 enq0tr 7337 addnqprl 7432 addnqpru 7433 cauappcvgprlemdisj 7554 lttri3 7940 ltleap 8490 mulgt1 8717 nominpos 9053 uzind 9258 indstr 9487 eqreznegel 9505 shftuz 10699 caucvgrelemcau 10862 sqrtsq 10926 mulcn2 11191 dvdsgcdb 11877 algcvgblem 11906 lcmdvdsb 11941 rpexp 12007 cnntr 12585 cnrest2 12596 txlm 12639 metrest 12866 bj-om 13472 |
Copyright terms: Public domain | W3C validator |