ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mon GIF version

Theorem mon 2035
Description: There is at most one of something which does not exist. (Contributed by Jim Kingdon, 5-Jul-2018.)
Assertion
Ref Expression
mon (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)

Proof of Theorem mon
StepHypRef Expression
1 ax-in2 605 . 2 (¬ ∃𝑥𝜑 → (∃𝑥𝜑 → ∃!𝑥𝜑))
2 df-mo 2010 . 2 (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
31, 2sylibr 133 1 (¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wex 1472  ∃!weu 2006  ∃*wmo 2007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605
This theorem depends on definitions:  df-bi 116  df-mo 2010
This theorem is referenced by:  moexexdc  2090
  Copyright terms: Public domain W3C validator