| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > mo2n | GIF version | ||
| Description: There is at most one of something which does not exist. (Contributed by Jim Kingdon, 2-Jul-2018.) | 
| Ref | Expression | 
|---|---|
| mon.1 | ⊢ Ⅎ𝑦𝜑 | 
| Ref | Expression | 
|---|---|
| mo2n | ⊢ (¬ ∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mon.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | sb8e 1871 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | 
| 3 | alnex 1513 | . . 3 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 ↔ ¬ ∃𝑦[𝑦 / 𝑥]𝜑) | |
| 4 | nfs1v 1958 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 5 | 4 | nfn 1672 | . . . . 5 ⊢ Ⅎ𝑥 ¬ [𝑦 / 𝑥]𝜑 | 
| 6 | 1 | nfn 1672 | . . . . 5 ⊢ Ⅎ𝑦 ¬ 𝜑 | 
| 7 | sbequ1 1782 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜑 → [𝑦 / 𝑥]𝜑)) | |
| 8 | 7 | equcoms 1722 | . . . . . 6 ⊢ (𝑦 = 𝑥 → (𝜑 → [𝑦 / 𝑥]𝜑)) | 
| 9 | 8 | con3d 632 | . . . . 5 ⊢ (𝑦 = 𝑥 → (¬ [𝑦 / 𝑥]𝜑 → ¬ 𝜑)) | 
| 10 | 5, 6, 9 | cbv3 1756 | . . . 4 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 → ∀𝑥 ¬ 𝜑) | 
| 11 | pm2.21 618 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝑥 = 𝑦)) | |
| 12 | 11 | alimi 1469 | . . . 4 ⊢ (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 13 | 19.8a 1604 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
| 14 | 10, 12, 13 | 3syl 17 | . . 3 ⊢ (∀𝑦 ¬ [𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 15 | 3, 14 | sylbir 135 | . 2 ⊢ (¬ ∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| 16 | 2, 15 | sylnbi 679 | 1 ⊢ (¬ ∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 [wsb 1776 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 | 
| This theorem is referenced by: modc 2088 | 
| Copyright terms: Public domain | W3C validator |