ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moexexdc GIF version

Theorem moexexdc 2120
Description: "At most one" double quantification. (Contributed by Jim Kingdon, 5-Jul-2018.)
Hypothesis
Ref Expression
moexexdc.1 𝑦𝜑
Assertion
Ref Expression
moexexdc (DECID𝑥𝜑 → ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓)))

Proof of Theorem moexexdc
StepHypRef Expression
1 df-dc 836 . 2 (DECID𝑥𝜑 ↔ (∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
2 hbmo1 2074 . . . . . 6 (∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑)
3 hba1 1550 . . . . . . 7 (∀𝑥∃*𝑦𝜓 → ∀𝑥𝑥∃*𝑦𝜓)
4 hbe1 1505 . . . . . . . 8 (∃𝑥(𝜑𝜓) → ∀𝑥𝑥(𝜑𝜓))
54hbmo 2075 . . . . . . 7 (∃*𝑦𝑥(𝜑𝜓) → ∀𝑥∃*𝑦𝑥(𝜑𝜓))
63, 5hbim 1555 . . . . . 6 ((∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)) → ∀𝑥(∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
72, 6hbim 1555 . . . . 5 ((∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))) → ∀𝑥(∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
8 moexexdc.1 . . . . . . . 8 𝑦𝜑
98nfri 1529 . . . . . . 7 (𝜑 → ∀𝑦𝜑)
109hbmo 2075 . . . . . . 7 (∃*𝑥𝜑 → ∀𝑦∃*𝑥𝜑)
11 mopick 2114 . . . . . . . . 9 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
1211ex 115 . . . . . . . 8 (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → (𝜑𝜓)))
1312com3r 79 . . . . . . 7 (𝜑 → (∃*𝑥𝜑 → (∃𝑥(𝜑𝜓) → 𝜓)))
149, 10, 13alrimdh 1489 . . . . . 6 (𝜑 → (∃*𝑥𝜑 → ∀𝑦(∃𝑥(𝜑𝜓) → 𝜓)))
15 moim 2100 . . . . . . 7 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1615spsd 1548 . . . . . 6 (∀𝑦(∃𝑥(𝜑𝜓) → 𝜓) → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
1714, 16syl6 33 . . . . 5 (𝜑 → (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
187, 17exlimih 1603 . . . 4 (∃𝑥𝜑 → (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
199hbex 1646 . . . . . . . . 9 (∃𝑥𝜑 → ∀𝑦𝑥𝜑)
20 exsimpl 1627 . . . . . . . . 9 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2119, 20exlimih 1603 . . . . . . . 8 (∃𝑦𝑥(𝜑𝜓) → ∃𝑥𝜑)
2221con3i 633 . . . . . . 7 (¬ ∃𝑥𝜑 → ¬ ∃𝑦𝑥(𝜑𝜓))
23 mon 2065 . . . . . . 7 (¬ ∃𝑦𝑥(𝜑𝜓) → ∃*𝑦𝑥(𝜑𝜓))
2422, 23syl 14 . . . . . 6 (¬ ∃𝑥𝜑 → ∃*𝑦𝑥(𝜑𝜓))
2524a1d 22 . . . . 5 (¬ ∃𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓)))
2625a1d 22 . . . 4 (¬ ∃𝑥𝜑 → (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
2718, 26jaoi 717 . . 3 ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → (∃*𝑥𝜑 → (∀𝑥∃*𝑦𝜓 → ∃*𝑦𝑥(𝜑𝜓))))
2827impd 254 . 2 ((∃𝑥𝜑 ∨ ¬ ∃𝑥𝜑) → ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓)))
291, 28sylbi 121 1 (DECID𝑥𝜑 → ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  DECID wdc 835  wal 1361  wnf 1470  wex 1502  ∃*wmo 2037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040
This theorem is referenced by:  2moswapdc  2126
  Copyright terms: Public domain W3C validator