ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euex GIF version

Theorem euex 2085
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euex (∃!𝑥𝜑 → ∃𝑥𝜑)

Proof of Theorem euex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1550 . . 3 (𝜑 → ∀𝑦𝜑)
21eu1 2080 . 2 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
3 exsimpl 1641 . 2 (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) → ∃𝑥𝜑)
42, 3sylbi 121 1 (∃!𝑥𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1371  wex 1516  [wsb 1786  ∃!weu 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-eu 2058
This theorem is referenced by:  eu2  2100  eu3h  2101  eu5  2103  exmoeudc  2119  eupickbi  2138  2eu2ex  2145  euxfrdc  2966  repizf  4176  eusvnf  4518  eusvnfb  4519  tz6.12c  5629  ndmfvg  5630  elfvm  5632  nfvres  5633  0fv  5635  eusvobj2  5953  fnoprabg  6069  0g0  13323  txcn  14862
  Copyright terms: Public domain W3C validator