![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > euex | GIF version |
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
Ref | Expression |
---|---|
euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1487 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | eu1 1998 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
3 | exsimpl 1577 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
4 | 2, 3 | sylbi 120 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1310 ∃wex 1449 [wsb 1716 ∃!weu 1973 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 |
This theorem depends on definitions: df-bi 116 df-nf 1418 df-sb 1717 df-eu 1976 |
This theorem is referenced by: eu2 2017 eu3h 2018 eu5 2020 exmoeudc 2036 eupickbi 2055 2eu2ex 2062 euxfrdc 2837 repizf 4002 eusvnf 4332 eusvnfb 4333 tz6.12c 5403 ndmfvg 5404 nfvres 5406 0fv 5408 eusvobj2 5712 fnoprabg 5824 txcn 12279 |
Copyright terms: Public domain | W3C validator |