ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euex GIF version

Theorem euex 2003
Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
euex (∃!𝑥𝜑 → ∃𝑥𝜑)

Proof of Theorem euex
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1487 . . 3 (𝜑 → ∀𝑦𝜑)
21eu1 1998 . 2 (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
3 exsimpl 1577 . 2 (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) → ∃𝑥𝜑)
42, 3sylbi 120 1 (∃!𝑥𝜑 → ∃𝑥𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1310  wex 1449  [wsb 1716  ∃!weu 1973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496
This theorem depends on definitions:  df-bi 116  df-nf 1418  df-sb 1717  df-eu 1976
This theorem is referenced by:  eu2  2017  eu3h  2018  eu5  2020  exmoeudc  2036  eupickbi  2055  2eu2ex  2062  euxfrdc  2837  repizf  4002  eusvnf  4332  eusvnfb  4333  tz6.12c  5403  ndmfvg  5404  nfvres  5406  0fv  5408  eusvobj2  5712  fnoprabg  5824  txcn  12279
  Copyright terms: Public domain W3C validator