| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1549 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | eu1 2079 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 3 | exsimpl 1640 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
| 4 | 2, 3 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1515 [wsb 1785 ∃!weu 2054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-eu 2057 |
| This theorem is referenced by: eu2 2098 eu3h 2099 eu5 2101 exmoeudc 2117 eupickbi 2136 2eu2ex 2143 euxfrdc 2959 repizf 4160 eusvnf 4500 eusvnfb 4501 tz6.12c 5606 ndmfvg 5607 elfvm 5609 nfvres 5610 0fv 5612 eusvobj2 5930 fnoprabg 6046 0g0 13208 txcn 14747 |
| Copyright terms: Public domain | W3C validator |