| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1572 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | eu1 2102 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 3 | exsimpl 1663 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
| 4 | 2, 3 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 [wsb 1808 ∃!weu 2077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-eu 2080 |
| This theorem is referenced by: eu2 2122 eu3h 2123 eu5 2125 exmoeudc 2141 eupickbi 2160 2eu2ex 2167 euxfrdc 2989 repizf 4200 eusvnf 4544 eusvnfb 4545 tz6.12c 5657 ndmfvg 5658 elfvm 5660 nfvres 5663 0fv 5665 eusvobj2 5987 fnoprabg 6105 0g0 13409 txcn 14949 |
| Copyright terms: Public domain | W3C validator |