| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euex | GIF version | ||
| Description: Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| euex | ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-17 1540 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
| 2 | 1 | eu1 2070 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) |
| 3 | exsimpl 1631 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦)) → ∃𝑥𝜑) | |
| 4 | 2, 3 | sylbi 121 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 ∃wex 1506 [wsb 1776 ∃!weu 2045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-eu 2048 |
| This theorem is referenced by: eu2 2089 eu3h 2090 eu5 2092 exmoeudc 2108 eupickbi 2127 2eu2ex 2134 euxfrdc 2950 repizf 4149 eusvnf 4488 eusvnfb 4489 tz6.12c 5588 ndmfvg 5589 elfvm 5591 nfvres 5592 0fv 5594 eusvobj2 5908 fnoprabg 6023 0g0 13019 txcn 14511 |
| Copyright terms: Public domain | W3C validator |