HomeHome Intuitionistic Logic Explorer
Theorem List (p. 21 of 158)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2001-2100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremhbsbd 2001* Deduction version of hbsb 1968. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑧𝜑)    &   (𝜑 → (𝜓 → ∀𝑧𝜓))       (𝜑 → ([𝑦 / 𝑥]𝜓 → ∀𝑧[𝑦 / 𝑥]𝜓))
 
Theorem2sb5 2002* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ 𝜑))
 
Theorem2sb6 2003* Equivalence for double substitution. (Contributed by NM, 3-Feb-2005.)
([𝑧 / 𝑥][𝑤 / 𝑦]𝜑 ↔ ∀𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
Theoremsbcom2v 2004* Lemma for proving sbcom2 2006. It is the same as sbcom2 2006 but with additional distinct variable constraints on 𝑥 and 𝑦, and on 𝑤 and 𝑧. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2v2 2005* Lemma for proving sbcom2 2006. It is the same as sbcom2v 2004 but removes the distinct variable constraint on 𝑥 and 𝑦. (Contributed by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsbcom2 2006* Commutativity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 27-May-1997.) (Proof modified to be intuitionistic by Jim Kingdon, 19-Feb-2018.)
([𝑤 / 𝑧][𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥][𝑤 / 𝑧]𝜑)
 
Theoremsb6a 2007* Equivalence for substitution. (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))
 
Theorem2sb5rf 2008* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∃𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theorem2sb6rf 2009* Reversed double substitution. (Contributed by NM, 3-Feb-2005.)
(𝜑 → ∀𝑧𝜑)    &   (𝜑 → ∀𝑤𝜑)       (𝜑 ↔ ∀𝑧𝑤((𝑧 = 𝑥𝑤 = 𝑦) → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑))
 
Theoremdfsb7 2010* An alternate definition of proper substitution df-sb 1777. By introducing a dummy variable 𝑧 in the definiens, we are able to eliminate any distinct variable restrictions among the variables 𝑥, 𝑦, and 𝜑 of the definiendum. No distinct variable conflicts arise because 𝑧 effectively insulates 𝑥 from 𝑦. To achieve this, we use a chain of two substitutions in the form of sb5 1902, first 𝑧 for 𝑥 then 𝑦 for 𝑧. Compare Definition 2.1'' of [Quine] p. 17. Theorem sb7f 2011 provides a version where 𝜑 and 𝑧 don't have to be distinct. (Contributed by NM, 28-Jan-2004.)
([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7f 2011* This version of dfsb7 2010 does not require that 𝜑 and 𝑧 be disjoint. This permits it to be used as a definition for substitution in a formalization that omits the logically redundant axiom ax-17 1540, i.e., that does not have the concept of a variable not occurring in a formula. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(𝜑 → ∀𝑧𝜑)       ([𝑦 / 𝑥]𝜑 ↔ ∃𝑧(𝑧 = 𝑦 ∧ ∃𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb7af 2012* An alternate definition of proper substitution df-sb 1777. Similar to dfsb7a 2013 but does not require that 𝜑 and 𝑧 be distinct. Similar to sb7f 2011 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . (Contributed by Jim Kingdon, 5-Feb-2018.)
𝑧𝜑       ([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremdfsb7a 2013* An alternate definition of proper substitution df-sb 1777. Similar to dfsb7 2010 in that it involves a dummy variable 𝑧, but expressed in terms of rather than . For a version which only requires 𝑧𝜑 rather than 𝑧 and 𝜑 being distinct, see sb7af 2012. (Contributed by Jim Kingdon, 5-Feb-2018.)
([𝑦 / 𝑥]𝜑 ↔ ∀𝑧(𝑧 = 𝑦 → ∀𝑥(𝑥 = 𝑧𝜑)))
 
Theoremsb10f 2014* Hao Wang's identity axiom P6 in Irving Copi, Symbolic Logic (5th ed., 1979), p. 328. In traditional predicate calculus, this is a sole axiom for identity from which the usual ones can be derived. (Contributed by NM, 9-May-2005.)
(𝜑 → ∀𝑥𝜑)       ([𝑦 / 𝑧]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑧]𝜑))
 
Theoremsbid2v 2015* An identity law for substitution. Used in proof of Theorem 9.7 of [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
([𝑦 / 𝑥][𝑥 / 𝑦]𝜑𝜑)
 
Theoremsbelx 2016* Elimination of substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑))
 
Theoremsbel2x 2017* Elimination of double substitution. (Contributed by NM, 5-Aug-1993.)
(𝜑 ↔ ∃𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) ∧ [𝑦 / 𝑤][𝑥 / 𝑧]𝜑))
 
Theoremsbalyz 2018* Move universal quantifier in and out of substitution. Identical to sbal 2019 except that it has an additional distinct variable constraint on 𝑦 and 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal 2019* Move universal quantifier in and out of substitution. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbal1yz 2020* Lemma for proving sbal1 2021. Same as sbal1 2021 but with an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 23-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbal1 2021* A theorem used in elimination of disjoint variable conditions on 𝑥, 𝑦 by replacing it with a distinctor ¬ ∀𝑥𝑥 = 𝑧. (Contributed by NM, 5-Aug-1993.) (Proof rewitten by Jim Kingdon, 24-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑧 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremsbexyz 2022* Move existential quantifier in and out of substitution. Identical to sbex 2023 except that it has an additional disjoint variable condition on 𝑦, 𝑧. (Contributed by Jim Kingdon, 29-Dec-2017.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbex 2023* Move existential quantifier in and out of substitution. (Contributed by NM, 27-Sep-2003.) (Proof rewritten by Jim Kingdon, 12-Feb-2018.)
([𝑧 / 𝑦]∃𝑥𝜑 ↔ ∃𝑥[𝑧 / 𝑦]𝜑)
 
Theoremsbalv 2024* Quantify with new variable inside substitution. (Contributed by NM, 18-Aug-1993.)
([𝑦 / 𝑥]𝜑𝜓)       ([𝑦 / 𝑥]∀𝑧𝜑 ↔ ∀𝑧𝜓)
 
Theoremsbco4lem 2025* Lemma for sbco4 2026. It replaces the temporary variable 𝑣 with another temporary variable 𝑤. (Contributed by Jim Kingdon, 26-Sep-2018.)
([𝑥 / 𝑣][𝑦 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremsbco4 2026* Two ways of exchanging two variables. Both sides of the biconditional exchange 𝑥 and 𝑦, either via two temporary variables 𝑢 and 𝑣, or a single temporary 𝑤. (Contributed by Jim Kingdon, 25-Sep-2018.)
([𝑦 / 𝑢][𝑥 / 𝑣][𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ↔ [𝑥 / 𝑤][𝑦 / 𝑥][𝑤 / 𝑦]𝜑)
 
Theoremexsb 2027* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
 
Theorem2exsb 2028* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
TheoremdvelimALT 2029* Version of dvelim 2036 that doesn't use ax-10 1519. Because it has different distinct variable constraints than dvelim 2036 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimfv 2030* Like dvelimf 2034 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremhbsb4 2031 A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
 
Theoremhbsb4t 2032 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2031). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
 
Theoremnfsb4t 2033 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2031). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
 
Theoremdvelimf 2034 Version of dvelim 2036 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimdf 2035 Deduction form of dvelimf 2034. This version may be useful if we want to avoid ax-17 1540 and use ax-16 1828 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
𝑥𝜑    &   𝑧𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑧𝜒)    &   (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
 
Theoremdvelim 2036* This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We don't require that 𝑥 and 𝑦 be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2035.

Other variants of this theorem are dvelimf 2034 (with no distinct variable restrictions) and dvelimALT 2029 (that avoids ax-10 1519). (Contributed by NM, 23-Nov-1994.)

(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimor 2037* Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula 𝜑 (containing 𝑧) and a distinct variable constraint between 𝑥 and 𝑧. The theorem makes it possible to replace the distinct variable constraint with the disjunct 𝑥𝑥 = 𝑦 (𝜓 is just a version of 𝜑 with 𝑦 substituted for 𝑧). (Contributed by Jim Kingdon, 11-May-2018.)
𝑥𝜑    &   (𝑧 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)
 
Theoremdveeq1 2038* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theoremsbal2 2039* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremnfsb4or 2040 A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
𝑧𝜑       (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfd2 2041 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.)
(𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremhbe1a 2042 Dual statement of hbe1 1509. (Contributed by Wolf Lammen, 15-Sep-2021.)
(∃𝑥𝑥𝜑 → ∀𝑥𝜑)
 
Theoremnf5-1 2043 One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
 
Theoremnf5d 2044 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
1.4.6  Existential uniqueness
 
Syntaxweu 2045 Extend wff definition to include existential uniqueness ("there exists a unique 𝑥 such that 𝜑").
wff ∃!𝑥𝜑
 
Syntaxwmo 2046 Extend wff definition to include uniqueness ("there exists at most one 𝑥 such that 𝜑").
wff ∃*𝑥𝜑
 
Theoremeujust 2047* A soundness justification theorem for df-eu 2048, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
 
Definitiondf-eu 2048* Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2070, eu2 2089, eu3 2091, and eu5 2092 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2138). (Contributed by NM, 5-Aug-1993.)
(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Definitiondf-mo 2049 Define "there exists at most one 𝑥 such that 𝜑". Here we define it in terms of existential uniqueness. Notation of [BellMachover] p. 460, whose definition we show as mo3 2099. For another possible definition see mo4 2106. (Contributed by NM, 5-Aug-1993.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
 
Theoremeuf 2050* A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeubidh 2051 Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubid 2052 Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubidv 2053* Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubii 2054 Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
(𝜑𝜓)       (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
 
Theoremhbeu1 2055 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.)
(∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑)
 
Theoremnfeu1 2056 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃!𝑥𝜑
 
Theoremnfmo1 2057 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃*𝑥𝜑
 
Theoremsb8eu 2058 Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8mo 2059 Variable substitution for "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
 
Theoremnfeudv 2060* Deduction version of nfeu 2064. Similar to nfeud 2061 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfeud 2061 Deduction version of nfeu 2064. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfmod 2062 Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
 
Theoremnfeuv 2063* Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2064 but has the additional condition that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfeu 2064 Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfmo 2065 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
𝑥𝜑       𝑥∃*𝑦𝜑
 
Theoremhbeu 2066 Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
(𝜑 → ∀𝑥𝜑)       (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
 
Theoremhbeud 2067 Deduction version of hbeu 2066. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓))
 
Theoremsb8euh 2068 Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbveu 2069 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremeu1 2070* An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
 
Theoremeuor 2071 Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 21-Oct-2005.)
(𝜑 → ∀𝑥𝜑)       ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremeuorv 2072* Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremmo2n 2073* There is at most one of something which does not exist. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremmon 2074 There is at most one of something which does not exist. (Contributed by Jim Kingdon, 5-Jul-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeuex 2075 Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃!𝑥𝜑 → ∃𝑥𝜑)
 
Theoremeumo0 2076* Existential uniqueness implies "at most one". (Contributed by NM, 8-Jul-1994.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeumo 2077 Existential uniqueness implies "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeumoi 2078 "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.)
∃!𝑥𝜑       ∃*𝑥𝜑
 
Theoremmobidh 2079 Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobid 2080 Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobidv 2081* Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobii 2082 Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
(𝜓𝜒)       (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)
 
Theoremhbmo1 2083 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.)
(∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑)
 
Theoremhbmo 2084 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
(𝜑 → ∀𝑥𝜑)       (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)
 
Theoremcbvmo 2085 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremmo23 2086* An implication between two definitions of "there exists at most one." (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmor 2087* Converse of mo23 2086 with an additional 𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremmodc 2088* Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu2 2089* An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu3h 2090* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu3 2091* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu5 2092 Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
 
Theoremexmoeu2 2093 Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
(∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
 
Theoremmoabs 2094 Absorption of existence condition by "at most one". (Contributed by NM, 4-Nov-2002.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
 
Theoremexmodc 2095 If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
(DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))
 
Theoremexmonim 2096 There is at most one of something which does not exist. Unlike exmodc 2095 there is no decidability condition. (Contributed by Jim Kingdon, 22-Sep-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremmo2r 2097* A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
 
Theoremmo3h 2098* Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo3 2099* Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo2dc 2100* Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >