Home | Intuitionistic Logic Explorer Theorem List (p. 21 of 142) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | exsb 2001* | An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.) |
⊢ (∃𝑥𝜑 ↔ ∃𝑦∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | 2exsb 2002* | An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.) |
⊢ (∃𝑥∃𝑦𝜑 ↔ ∃𝑧∃𝑤∀𝑥∀𝑦((𝑥 = 𝑧 ∧ 𝑦 = 𝑤) → 𝜑)) | ||
Theorem | dvelimALT 2003* | Version of dvelim 2010 that doesn't use ax-10 1498. Because it has different distinct variable constraints than dvelim 2010 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimfv 2004* | Like dvelimf 2008 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | hbsb4 2005 | A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.) |
⊢ (𝜑 → ∀𝑧𝜑) ⇒ ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)) | ||
Theorem | hbsb4t 2006 | A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥∀𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))) | ||
Theorem | nfsb4t 2007 | A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.) |
⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) | ||
Theorem | dvelimf 2008 | Version of dvelim 2010 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimdf 2009 | Deduction form of dvelimf 2008. This version may be useful if we want to avoid ax-17 1519 and use ax-16 1807 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑧𝜒) & ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) | ||
Theorem | dvelim 2010* |
This theorem can be used to eliminate a distinct variable restriction on
𝑥 and 𝑧 and replace it with the
"distinctor" ¬ ∀𝑥𝑥 = 𝑦
as an antecedent. 𝜑 normally has 𝑧 free and can be read
𝜑(𝑧), and 𝜓 substitutes 𝑦 for
𝑧
and can be read
𝜑(𝑦). We don't require that 𝑥 and
𝑦
be distinct: if
they aren't, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with ∀𝑥∀𝑧, conjoin them, and apply dvelimdf 2009. Other variants of this theorem are dvelimf 2008 (with no distinct variable restrictions) and dvelimALT 2003 (that avoids ax-10 1498). (Contributed by NM, 23-Nov-1994.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimor 2011* | Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula 𝜑 (containing 𝑧) and a distinct variable constraint between 𝑥 and 𝑧. The theorem makes it possible to replace the distinct variable constraint with the disjunct ∀𝑥𝑥 = 𝑦 (𝜓 is just a version of 𝜑 with 𝑦 substituted for 𝑧). (Contributed by Jim Kingdon, 11-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓) | ||
Theorem | dveeq1 2012* | Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | sbal2 2013* | Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑)) | ||
Theorem | nfsb4or 2014 | A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑) | ||
Theorem | nfd2 2015 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.) |
⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
Theorem | hbe1a 2016 | Dual statement of hbe1 1488. (Contributed by Wolf Lammen, 15-Sep-2021.) |
⊢ (∃𝑥∀𝑥𝜑 → ∀𝑥𝜑) | ||
Theorem | nf5-1 2017 | One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑) | ||
Theorem | nf5d 2018 | Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → Ⅎ𝑥𝜓) | ||
Syntax | weu 2019 | Extend wff definition to include existential uniqueness ("there exists a unique 𝑥 such that 𝜑"). |
wff ∃!𝑥𝜑 | ||
Syntax | wmo 2020 | Extend wff definition to include uniqueness ("there exists at most one 𝑥 such that 𝜑"). |
wff ∃*𝑥𝜑 | ||
Theorem | eujust 2021* | A soundness justification theorem for df-eu 2022, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑧∀𝑥(𝜑 ↔ 𝑥 = 𝑧)) | ||
Definition | df-eu 2022* | Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2044, eu2 2063, eu3 2065, and eu5 2066 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2112). (Contributed by NM, 5-Aug-1993.) |
⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Definition | df-mo 2023 | Define "there exists at most one 𝑥 such that 𝜑". Here we define it in terms of existential uniqueness. Notation of [BellMachover] p. 460, whose definition we show as mo3 2073. For another possible definition see mo4 2080. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑)) | ||
Theorem | euf 2024* | A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | eubidh 2025 | Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | ||
Theorem | eubid 2026 | Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | ||
Theorem | eubidv 2027* | Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) | ||
Theorem | eubii 2028 | Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥𝜓) | ||
Theorem | hbeu1 2029 | Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) |
⊢ (∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑) | ||
Theorem | nfeu1 2030 | Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∃!𝑥𝜑 | ||
Theorem | nfmo1 2031 | Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑥∃*𝑥𝜑 | ||
Theorem | sb8eu 2032 | Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | sb8mo 2033 | Variable substitution for "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | nfeudv 2034* | Deduction version of nfeu 2038. Similar to nfeud 2035 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 25-May-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) | ||
Theorem | nfeud 2035 | Deduction version of nfeu 2038. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃!𝑦𝜓) | ||
Theorem | nfmod 2036 | Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃*𝑦𝜓) | ||
Theorem | nfeuv 2037* | Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2038 but has the additional condition that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦𝜑 | ||
Theorem | nfeu 2038 | Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃!𝑦𝜑 | ||
Theorem | nfmo 2039 | Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥∃*𝑦𝜑 | ||
Theorem | hbeu 2040 | Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑) | ||
Theorem | hbeud 2041 | Deduction version of hbeu 2040. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓)) | ||
Theorem | sb8euh 2042 | Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑) | ||
Theorem | cbveu 2043 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) | ||
Theorem | eu1 2044* | An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑 → 𝑥 = 𝑦))) | ||
Theorem | euor 2045 | Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | euorv 2046* | Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 23-Mar-1995.) |
⊢ ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | mo2n 2047* | There is at most one of something which does not exist. (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (¬ ∃𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
Theorem | mon 2048 | There is at most one of something which does not exist. (Contributed by Jim Kingdon, 5-Jul-2018.) |
⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | euex 2049 | Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (∃!𝑥𝜑 → ∃𝑥𝜑) | ||
Theorem | eumo0 2050* | Existential uniqueness implies "at most one". (Contributed by NM, 8-Jul-1994.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | ||
Theorem | eumo 2051 | Existential uniqueness implies "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
⊢ (∃!𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | eumoi 2052 | "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
⊢ ∃!𝑥𝜑 ⇒ ⊢ ∃*𝑥𝜑 | ||
Theorem | mobidh 2053 | Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | mobid 2054 | Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | mobidv 2055* | Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | ||
Theorem | mobii 2056 | Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) |
⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) | ||
Theorem | hbmo1 2057 | Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.) |
⊢ (∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑) | ||
Theorem | hbmo 2058 | Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑) | ||
Theorem | cbvmo 2059 | Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) |
⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∃*𝑦𝜓) | ||
Theorem | mo23 2060* | An implication between two definitions of "there exists at most one." (Contributed by Jim Kingdon, 25-Jun-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mor 2061* | Converse of mo23 2060 with an additional ∃𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥𝜑 → (∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | modc 2062* | Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (DECID ∃𝑥𝜑 → (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
Theorem | eu2 2063* | An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
Theorem | eu3h 2064* | An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | eu3 2065* | An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | eu5 2066 | Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.) |
⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | ||
Theorem | exmoeu2 2067 | Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑)) | ||
Theorem | moabs 2068 | Absorption of existence condition by "at most one". (Contributed by NM, 4-Nov-2002.) |
⊢ (∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑)) | ||
Theorem | exmodc 2069 | If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.) |
⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑)) | ||
Theorem | exmonim 2070 | There is at most one of something which does not exist. Unlike exmodc 2069 there is no decidability condition. (Contributed by Jim Kingdon, 22-Sep-2018.) |
⊢ (¬ ∃𝑥𝜑 → ∃*𝑥𝜑) | ||
Theorem | mo2r 2071* | A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦) → ∃*𝑥𝜑) | ||
Theorem | mo3h 2072* | Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mo3 2073* | Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)) | ||
Theorem | mo2dc 2074* | Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (DECID ∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) | ||
Theorem | euan 2075 | Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) | ||
Theorem | euanv 2076* | Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.) |
⊢ (∃!𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓)) | ||
Theorem | euor2 2077 | Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (¬ ∃𝑥𝜑 → (∃!𝑥(𝜑 ∨ 𝜓) ↔ ∃!𝑥𝜓)) | ||
Theorem | sbmo 2078* | Substitution into "at most one". (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑) | ||
Theorem | mo4f 2079* | "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Theorem | mo4 2080* | "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Theorem | eu4 2081* | Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) | ||
Theorem | exmoeudc 2082 | Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.) |
⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑))) | ||
Theorem | moim 2083 | "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | ||
Theorem | moimi 2084 | "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) | ||
Theorem | moimv 2085* | Move antecedent outside of "at most one". (Contributed by NM, 28-Jul-1995.) |
⊢ (∃*𝑥(𝜑 → 𝜓) → (𝜑 → ∃*𝑥𝜓)) | ||
Theorem | euimmo 2086 | Uniqueness implies "at most one" through implication. (Contributed by NM, 22-Apr-1995.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑)) | ||
Theorem | euim 2087 | Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
⊢ ((∃𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑)) | ||
Theorem | moan 2088 | "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.) |
⊢ (∃*𝑥𝜑 → ∃*𝑥(𝜓 ∧ 𝜑)) | ||
Theorem | moani 2089 | "At most one" is still true when a conjunct is added. (Contributed by NM, 9-Mar-1995.) |
⊢ ∃*𝑥𝜑 ⇒ ⊢ ∃*𝑥(𝜓 ∧ 𝜑) | ||
Theorem | moor 2090 | "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.) |
⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜑) | ||
Theorem | mooran1 2091 | "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | mooran2 2092 | "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) | ||
Theorem | moanim 2093 | Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 3-Dec-2001.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) | ||
Theorem | moanimv 2094* | Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.) |
⊢ (∃*𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 → ∃*𝑥𝜓)) | ||
Theorem | moaneu 2095 | Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) |
⊢ ∃*𝑥(𝜑 ∧ ∃!𝑥𝜑) | ||
Theorem | moanmo 2096 | Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.) |
⊢ ∃*𝑥(𝜑 ∧ ∃*𝑥𝜑) | ||
Theorem | mopick 2097 | "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) |
⊢ ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | eupick 2098 | Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.) |
⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 → 𝜓)) | ||
Theorem | eupicka 2099 | Version of eupick 2098 with closed formulas. (Contributed by NM, 6-Sep-2008.) |
⊢ ((∃!𝑥𝜑 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → ∀𝑥(𝜑 → 𝜓)) | ||
Theorem | eupickb 2100 | Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) |
⊢ ((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑 ∧ 𝜓)) → (𝜑 ↔ 𝜓)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |