HomeHome Intuitionistic Logic Explorer
Theorem List (p. 21 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2001-2100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremexsb 2001* An equivalent expression for existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝜑 ↔ ∃𝑦𝑥(𝑥 = 𝑦𝜑))
 
Theorem2exsb 2002* An equivalent expression for double existence. (Contributed by NM, 2-Feb-2005.)
(∃𝑥𝑦𝜑 ↔ ∃𝑧𝑤𝑥𝑦((𝑥 = 𝑧𝑦 = 𝑤) → 𝜑))
 
TheoremdvelimALT 2003* Version of dvelim 2010 that doesn't use ax-10 1498. Because it has different distinct variable constraints than dvelim 2010 and is used in important proofs, it would be better if it had a name which does not end in ALT (ideally more close to set.mm naming). (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimfv 2004* Like dvelimf 2008 but with a distinct variable constraint on 𝑥 and 𝑧. (Contributed by Jim Kingdon, 6-Mar-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremhbsb4 2005 A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 23-Mar-2018.)
(𝜑 → ∀𝑧𝜑)       (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑))
 
Theoremhbsb4t 2006 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
(∀𝑥𝑧(𝜑 → ∀𝑧𝜑) → (¬ ∀𝑧 𝑧 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑧[𝑦 / 𝑥]𝜑)))
 
Theoremnfsb4t 2007 A variable not free remains so after substitution with a distinct variable (closed form of hbsb4 2005). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof rewritten by Jim Kingdon, 9-May-2018.)
(∀𝑥𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑))
 
Theoremdvelimf 2008 Version of dvelim 2010 without any variable restrictions. (Contributed by NM, 1-Oct-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑧𝜓)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimdf 2009 Deduction form of dvelimf 2008. This version may be useful if we want to avoid ax-17 1519 and use ax-16 1807 instead. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.)
𝑥𝜑    &   𝑧𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑 → Ⅎ𝑧𝜒)    &   (𝜑 → (𝑧 = 𝑦 → (𝜓𝜒)))       (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒))
 
Theoremdvelim 2010* This theorem can be used to eliminate a distinct variable restriction on 𝑥 and 𝑧 and replace it with the "distinctor" ¬ ∀𝑥𝑥 = 𝑦 as an antecedent. 𝜑 normally has 𝑧 free and can be read 𝜑(𝑧), and 𝜓 substitutes 𝑦 for 𝑧 and can be read 𝜑(𝑦). We don't require that 𝑥 and 𝑦 be distinct: if they aren't, the distinctor will become false (in multiple-element domains of discourse) and "protect" the consequent.

To obtain a closed-theorem form of this inference, prefix the hypotheses with 𝑥𝑧, conjoin them, and apply dvelimdf 2009.

Other variants of this theorem are dvelimf 2008 (with no distinct variable restrictions) and dvelimALT 2003 (that avoids ax-10 1498). (Contributed by NM, 23-Nov-1994.)

(𝜑 → ∀𝑥𝜑)    &   (𝑧 = 𝑦 → (𝜑𝜓))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓))
 
Theoremdvelimor 2011* Disjunctive distinct variable constraint elimination. A user of this theorem starts with a formula 𝜑 (containing 𝑧) and a distinct variable constraint between 𝑥 and 𝑧. The theorem makes it possible to replace the distinct variable constraint with the disjunct 𝑥𝑥 = 𝑦 (𝜓 is just a version of 𝜑 with 𝑦 substituted for 𝑧). (Contributed by Jim Kingdon, 11-May-2018.)
𝑥𝜑    &   (𝑧 = 𝑦 → (𝜑𝜓))       (∀𝑥 𝑥 = 𝑦 ∨ Ⅎ𝑥𝜓)
 
Theoremdveeq1 2012* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) (Proof rewritten by Jim Kingdon, 19-Feb-2018.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧))
 
Theoremsbal2 2013* Move quantifier in and out of substitution. (Contributed by NM, 2-Jan-2002.)
(¬ ∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑦]∀𝑥𝜑 ↔ ∀𝑥[𝑧 / 𝑦]𝜑))
 
Theoremnfsb4or 2014 A variable not free remains so after substitution with a distinct variable. (Contributed by Jim Kingdon, 11-May-2018.)
𝑧𝜑       (∀𝑧 𝑧 = 𝑦 ∨ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
 
Theoremnfd2 2015 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Wolf Lammen, 16-Sep-2021.)
(𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
Theoremhbe1a 2016 Dual statement of hbe1 1488. (Contributed by Wolf Lammen, 15-Sep-2021.)
(∃𝑥𝑥𝜑 → ∀𝑥𝜑)
 
Theoremnf5-1 2017 One direction of nf5 . (Contributed by Wolf Lammen, 16-Sep-2021.)
(∀𝑥(𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
 
Theoremnf5d 2018 Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
𝑥𝜑    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → Ⅎ𝑥𝜓)
 
1.4.6  Existential uniqueness
 
Syntaxweu 2019 Extend wff definition to include existential uniqueness ("there exists a unique 𝑥 such that 𝜑").
wff ∃!𝑥𝜑
 
Syntaxwmo 2020 Extend wff definition to include uniqueness ("there exists at most one 𝑥 such that 𝜑").
wff ∃*𝑥𝜑
 
Theoremeujust 2021* A soundness justification theorem for df-eu 2022, showing that the definition is equivalent to itself with its dummy variable renamed. Note that 𝑦 and 𝑧 needn't be distinct variables. (Contributed by NM, 11-Mar-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∃𝑧𝑥(𝜑𝑥 = 𝑧))
 
Definitiondf-eu 2022* Define existential uniqueness, i.e., "there exists exactly one 𝑥 such that 𝜑". Definition 10.1 of [BellMachover] p. 97; also Definition *14.02 of [WhiteheadRussell] p. 175. Other possible definitions are given by eu1 2044, eu2 2063, eu3 2065, and eu5 2066 (which in some cases we show with a hypothesis 𝜑 → ∀𝑦𝜑 in place of a distinct variable condition on 𝑦 and 𝜑). Double uniqueness is tricky: ∃!𝑥∃!𝑦𝜑 does not mean "exactly one 𝑥 and one 𝑦 " (see 2eu4 2112). (Contributed by NM, 5-Aug-1993.)
(∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Definitiondf-mo 2023 Define "there exists at most one 𝑥 such that 𝜑". Here we define it in terms of existential uniqueness. Notation of [BellMachover] p. 460, whose definition we show as mo3 2073. For another possible definition see mo4 2080. (Contributed by NM, 5-Aug-1993.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃!𝑥𝜑))
 
Theoremeuf 2024* A version of the existential uniqueness definition with a hypothesis instead of a distinct variable condition. (Contributed by NM, 12-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeubidh 2025 Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubid 2026 Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubidv 2027* Formula-building rule for unique existential quantifier (deduction form). (Contributed by NM, 9-Jul-1994.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
 
Theoremeubii 2028 Introduce unique existential quantifier to both sides of an equivalence. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 6-Oct-2016.)
(𝜑𝜓)       (∃!𝑥𝜑 ↔ ∃!𝑥𝜓)
 
Theoremhbeu1 2029 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.)
(∃!𝑥𝜑 → ∀𝑥∃!𝑥𝜑)
 
Theoremnfeu1 2030 Bound-variable hypothesis builder for uniqueness. (Contributed by NM, 9-Jul-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃!𝑥𝜑
 
Theoremnfmo1 2031 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑥∃*𝑥𝜑
 
Theoremsb8eu 2032 Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremsb8mo 2033 Variable substitution for "at most one". (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
 
Theoremnfeudv 2034* Deduction version of nfeu 2038. Similar to nfeud 2035 but has the additional constraint that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfeud 2035 Deduction version of nfeu 2038. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝜓)
 
Theoremnfmod 2036 Bound-variable hypothesis builder for "at most one". (Contributed by Mario Carneiro, 14-Nov-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃*𝑦𝜓)
 
Theoremnfeuv 2037* Bound-variable hypothesis builder for existential uniqueness. This is similar to nfeu 2038 but has the additional condition that 𝑥 and 𝑦 must be distinct. (Contributed by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfeu 2038 Bound-variable hypothesis builder for existential uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof rewritten by Jim Kingdon, 23-May-2018.)
𝑥𝜑       𝑥∃!𝑦𝜑
 
Theoremnfmo 2039 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
𝑥𝜑       𝑥∃*𝑦𝜑
 
Theoremhbeu 2040 Bound-variable hypothesis builder for uniqueness. Note that 𝑥 and 𝑦 needn't be distinct. (Contributed by NM, 8-Mar-1995.) (Proof rewritten by Jim Kingdon, 24-May-2018.)
(𝜑 → ∀𝑥𝜑)       (∃!𝑦𝜑 → ∀𝑥∃!𝑦𝜑)
 
Theoremhbeud 2041 Deduction version of hbeu 2040. (Contributed by NM, 15-Feb-2013.) (Proof rewritten by Jim Kingdon, 25-May-2018.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∃!𝑦𝜓 → ∀𝑥∃!𝑦𝜓))
 
Theoremsb8euh 2042 Variable substitution in unique existential quantifier. (Contributed by NM, 7-Aug-1994.) (Revised by Andrew Salmon, 9-Jul-2011.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃!𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbveu 2043 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremeu1 2044* An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
 
Theoremeuor 2045 Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 21-Oct-2005.)
(𝜑 → ∀𝑥𝜑)       ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremeuorv 2046* Introduce a disjunct into a unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremmo2n 2047* There is at most one of something which does not exist. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (¬ ∃𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremmon 2048 There is at most one of something which does not exist. (Contributed by Jim Kingdon, 5-Jul-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeuex 2049 Existential uniqueness implies existence. (Contributed by NM, 15-Sep-1993.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃!𝑥𝜑 → ∃𝑥𝜑)
 
Theoremeumo0 2050* Existential uniqueness implies "at most one". (Contributed by NM, 8-Jul-1994.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦))
 
Theoremeumo 2051 Existential uniqueness implies "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremeumoi 2052 "At most one" inferred from existential uniqueness. (Contributed by NM, 5-Apr-1995.)
∃!𝑥𝜑       ∃*𝑥𝜑
 
Theoremmobidh 2053 Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobid 2054 Formula-building rule for "at most one" quantifier (deduction form). (Contributed by NM, 8-Mar-1995.)
𝑥𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobidv 2055* Formula-building rule for "at most one" quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
 
Theoremmobii 2056 Formula-building rule for "at most one" quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.)
(𝜓𝜒)       (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)
 
Theoremhbmo1 2057 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 8-Mar-1995.)
(∃*𝑥𝜑 → ∀𝑥∃*𝑥𝜑)
 
Theoremhbmo 2058 Bound-variable hypothesis builder for "at most one". (Contributed by NM, 9-Mar-1995.)
(𝜑 → ∀𝑥𝜑)       (∃*𝑦𝜑 → ∀𝑥∃*𝑦𝜑)
 
Theoremcbvmo 2059 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremmo23 2060* An implication between two definitions of "there exists at most one." (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmor 2061* Converse of mo23 2060 with an additional 𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
𝑦𝜑       (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremmodc 2062* Equivalent definitions of "there exists at most one," given decidable existence. (Contributed by Jim Kingdon, 1-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃𝑦𝑥(𝜑𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu2 2063* An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu3h 2064* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu3 2065* An alternate way to express existential uniqueness. (Contributed by NM, 8-Jul-1994.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeu5 2066 Uniqueness in terms of "at most one". (Contributed by NM, 23-Mar-1995.) (Proof rewritten by Jim Kingdon, 27-May-2018.)
(∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑))
 
Theoremexmoeu2 2067 Existence implies "at most one" is equivalent to uniqueness. (Contributed by NM, 5-Apr-2004.)
(∃𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃!𝑥𝜑))
 
Theoremmoabs 2068 Absorption of existence condition by "at most one". (Contributed by NM, 4-Nov-2002.)
(∃*𝑥𝜑 ↔ (∃𝑥𝜑 → ∃*𝑥𝜑))
 
Theoremexmodc 2069 If existence is decidable, something exists or at most one exists. (Contributed by Jim Kingdon, 30-Jun-2018.)
(DECID𝑥𝜑 → (∃𝑥𝜑 ∨ ∃*𝑥𝜑))
 
Theoremexmonim 2070 There is at most one of something which does not exist. Unlike exmodc 2069 there is no decidability condition. (Contributed by Jim Kingdon, 22-Sep-2018.)
(¬ ∃𝑥𝜑 → ∃*𝑥𝜑)
 
Theoremmo2r 2071* A condition which implies "at most one". (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (∃𝑦𝑥(𝜑𝑥 = 𝑦) → ∃*𝑥𝜑)
 
Theoremmo3h 2072* Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.) (New usage is discouraged.)
(𝜑 → ∀𝑦𝜑)       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo3 2073* Alternate definition of "at most one". Definition of [BellMachover] p. 460, except that definition has the side condition that 𝑦 not occur in 𝜑 in place of our hypothesis. (Contributed by NM, 8-Mar-1995.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theoremmo2dc 2074* Alternate definition of "at most one" where existence is decidable. (Contributed by Jim Kingdon, 2-Jul-2018.)
𝑦𝜑       (DECID𝑥𝜑 → (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
 
Theoremeuan 2075 Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(𝜑 → ∀𝑥𝜑)       (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremeuanv 2076* Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.)
(∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremeuor2 2077 Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(¬ ∃𝑥𝜑 → (∃!𝑥(𝜑𝜓) ↔ ∃!𝑥𝜓))
 
Theoremsbmo 2078* Substitution into "at most one". (Contributed by Jeff Madsen, 2-Sep-2009.)
([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
 
Theoremmo4f 2079* "At most one" expressed using implicit substitution. (Contributed by NM, 10-Apr-2004.)
𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
 
Theoremmo4 2080* "At most one" expressed using implicit substitution. (Contributed by NM, 26-Jul-1995.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦))
 
Theoremeu4 2081* Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
 
Theoremexmoeudc 2082 Existence in terms of "at most one" and uniqueness. (Contributed by Jim Kingdon, 3-Jul-2018.)
(DECID𝑥𝜑 → (∃𝑥𝜑 ↔ (∃*𝑥𝜑 → ∃!𝑥𝜑)))
 
Theoremmoim 2083 "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 22-Apr-1995.)
(∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
 
Theoremmoimi 2084 "At most one" is preserved through implication (notice wff reversal). (Contributed by NM, 15-Feb-2006.)
(𝜑𝜓)       (∃*𝑥𝜓 → ∃*𝑥𝜑)
 
Theoremmoimv 2085* Move antecedent outside of "at most one". (Contributed by NM, 28-Jul-1995.)
(∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
 
Theoremeuimmo 2086 Uniqueness implies "at most one" through implication. (Contributed by NM, 22-Apr-1995.)
(∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
 
Theoremeuim 2087 Add existential unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
 
Theoremmoan 2088 "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
(∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
 
Theoremmoani 2089 "At most one" is still true when a conjunct is added. (Contributed by NM, 9-Mar-1995.)
∃*𝑥𝜑       ∃*𝑥(𝜓𝜑)
 
Theoremmoor 2090 "At most one" is still the case when a disjunct is removed. (Contributed by NM, 5-Apr-2004.)
(∃*𝑥(𝜑𝜓) → ∃*𝑥𝜑)
 
Theoremmooran1 2091 "At most one" imports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
((∃*𝑥𝜑 ∨ ∃*𝑥𝜓) → ∃*𝑥(𝜑𝜓))
 
Theoremmooran2 2092 "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
(∃*𝑥(𝜑𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓))
 
Theoremmoanim 2093 Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 3-Dec-2001.)
𝑥𝜑       (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
 
Theoremmoanimv 2094* Introduction of a conjunct into at-most-one quantifier. (Contributed by NM, 23-Mar-1995.)
(∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
 
Theoremmoaneu 2095 Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.)
∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)
 
Theoremmoanmo 2096 Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
 
Theoremmopick 2097 "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.)
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 
Theoremeupick 2098 Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 
Theoremeupicka 2099 Version of eupick 2098 with closed formulas. (Contributed by NM, 6-Sep-2008.)
((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
 
Theoremeupickb 2100 Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.)
((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >