ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mpnanrd GIF version

Theorem mpnanrd 697
Description: Eliminate the right side of a negated conjunction in an implication. (Contributed by ML, 17-Oct-2020.)
Hypotheses
Ref Expression
mpnanrd.1 (𝜑𝜓)
mpnanrd.2 (𝜑 → ¬ (𝜓𝜒))
Assertion
Ref Expression
mpnanrd (𝜑 → ¬ 𝜒)

Proof of Theorem mpnanrd
StepHypRef Expression
1 mpnanrd.1 . 2 (𝜑𝜓)
2 mpnanrd.2 . . 3 (𝜑 → ¬ (𝜓𝜒))
3 imnan 694 . . 3 ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓𝜒))
42, 3sylibr 134 . 2 (𝜑 → (𝜓 → ¬ 𝜒))
51, 4mpd 13 1 (𝜑 → ¬ 𝜒)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ecase2d  1385
  Copyright terms: Public domain W3C validator