| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nan | GIF version | ||
| Description: Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.) |
| Ref | Expression |
|---|---|
| nan | ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) → ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 263 | . 2 ⊢ (((𝜑 ∧ 𝜓) → ¬ 𝜒) ↔ (𝜑 → (𝜓 → ¬ 𝜒))) | |
| 2 | imnan 691 | . . 3 ⊢ ((𝜓 → ¬ 𝜒) ↔ ¬ (𝜓 ∧ 𝜒)) | |
| 3 | 2 | imbi2i 226 | . 2 ⊢ ((𝜑 → (𝜓 → ¬ 𝜒)) ↔ (𝜑 → ¬ (𝜓 ∧ 𝜒))) |
| 4 | 1, 3 | bitr2i 185 | 1 ⊢ ((𝜑 → ¬ (𝜓 ∧ 𝜒)) ↔ ((𝜑 ∧ 𝜓) → ¬ 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm4.15 695 |
| Copyright terms: Public domain | W3C validator |