Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.24 | GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 619 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | imnan 680 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnexmid 840 pm4.43 939 excxor 1368 nonconne 2348 dfnul2 3411 dfnul3 3412 rabnc 3441 axnul 4107 fiintim 6894 zeoxor 11806 unennn 12330 |
Copyright terms: Public domain | W3C validator |