Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm3.24 | GIF version |
Description: Law of noncontradiction. Theorem *3.24 of [WhiteheadRussell] p. 111 (who call it the "law of contradiction"). (Contributed by NM, 16-Sep-1993.) (Revised by Mario Carneiro, 2-Feb-2015.) |
Ref | Expression |
---|---|
pm3.24 | ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 624 | . 2 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | imnan 685 | . 2 ⊢ ((𝜑 → ¬ ¬ 𝜑) ↔ ¬ (𝜑 ∧ ¬ 𝜑)) | |
3 | 1, 2 | mpbi 144 | 1 ⊢ ¬ (𝜑 ∧ ¬ 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: nnexmid 845 pm4.43 944 excxor 1373 nonconne 2352 dfnul2 3416 dfnul3 3417 rabnc 3447 axnul 4114 fiintim 6906 zeoxor 11828 unennn 12352 |
Copyright terms: Public domain | W3C validator |