| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 640 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | 2 | con2i 630 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | con3rr3 636 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 695 nan 696 mpnanrd 697 pm3.24 698 imanst 893 ianordc 904 pm5.17dc 909 dn1dc 966 xorbin 1426 xordc1 1435 alinexa 1649 dfrex2dc 2521 ralinexa 2557 rabeq0 3521 disj 3540 minel 3553 disjsn 3728 sotricim 4413 poirr2 5120 funun 5361 imadiflem 5399 imadif 5400 brprcneu 5619 2omotaplemap 7439 prltlu 7670 caucvgprlemnbj 7850 caucvgprprlemnbj 7876 suplocexprlemmu 7901 xrltnsym2 9986 fzp1nel 10296 fsumsplit 11913 sumsplitdc 11938 phiprmpw 12739 odzdvds 12763 pcdvdsb 12838 lgsne0 15711 lgsquadlem3 15752 bj-nnor 16056 |
| Copyright terms: Public domain | W3C validator |