Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imnan | GIF version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 632 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | 2 | con2i 622 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
4 | pm3.2 138 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | con3rr3 628 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 3, 5 | impbii 125 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imnani 686 nan 687 pm3.24 688 imanst 883 ianordc 894 pm5.17dc 899 dn1dc 955 xorbin 1379 xordc1 1388 alinexa 1596 dfrex2dc 2461 ralinexa 2497 rabeq0 3444 disj 3463 minel 3476 disjsn 3645 sotricim 4308 poirr2 5003 funun 5242 imadiflem 5277 imadif 5278 brprcneu 5489 prltlu 7449 caucvgprlemnbj 7629 caucvgprprlemnbj 7655 suplocexprlemmu 7680 xrltnsym2 9751 fzp1nel 10060 fsumsplit 11370 sumsplitdc 11395 phiprmpw 12176 odzdvds 12199 pcdvdsb 12273 lgsne0 13733 bj-nnor 13769 |
Copyright terms: Public domain | W3C validator |