![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imnan | GIF version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 609 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | 2 | con2i 599 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
4 | pm3.2 138 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | con3rr3 605 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 3, 5 | impbii 125 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imnani 663 nan 664 pm3.24 665 imanst 856 ianordc 867 pm5.17dc 872 dn1dc 927 xorbin 1345 xordc1 1354 alinexa 1565 dfrex2dc 2402 ralinexa 2436 rabeq0 3358 disj 3377 minel 3390 disjsn 3551 sotricim 4205 poirr2 4889 funun 5125 imadiflem 5160 imadif 5161 brprcneu 5368 prltlu 7240 caucvgprlemnbj 7420 caucvgprprlemnbj 7446 xrltnsym2 9470 fzp1nel 9774 fsumsplit 11065 sumsplitdc 11090 phiprmpw 11740 bj-nnor 12633 |
Copyright terms: Public domain | W3C validator |