| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | 2 | con2i 628 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | con3rr3 634 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 692 nan 693 pm3.24 694 imanst 889 ianordc 900 pm5.17dc 905 dn1dc 962 xorbin 1395 xordc1 1404 alinexa 1617 dfrex2dc 2488 ralinexa 2524 rabeq0 3481 disj 3500 minel 3513 disjsn 3685 sotricim 4359 poirr2 5063 funun 5303 imadiflem 5338 imadif 5339 brprcneu 5554 2omotaplemap 7342 prltlu 7573 caucvgprlemnbj 7753 caucvgprprlemnbj 7779 suplocexprlemmu 7804 xrltnsym2 9888 fzp1nel 10198 fsumsplit 11591 sumsplitdc 11616 phiprmpw 12417 odzdvds 12441 pcdvdsb 12516 lgsne0 15387 lgsquadlem3 15428 bj-nnor 15488 |
| Copyright terms: Public domain | W3C validator |