| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | 2 | con2i 628 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | con3rr3 634 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 692 nan 693 pm3.24 694 imanst 889 ianordc 900 pm5.17dc 905 dn1dc 962 xorbin 1395 xordc1 1404 alinexa 1617 dfrex2dc 2488 ralinexa 2524 rabeq0 3481 disj 3500 minel 3513 disjsn 3685 sotricim 4359 poirr2 5063 funun 5303 imadiflem 5338 imadif 5339 brprcneu 5554 2omotaplemap 7340 prltlu 7571 caucvgprlemnbj 7751 caucvgprprlemnbj 7777 suplocexprlemmu 7802 xrltnsym2 9886 fzp1nel 10196 fsumsplit 11589 sumsplitdc 11614 phiprmpw 12415 odzdvds 12439 pcdvdsb 12514 lgsne0 15363 lgsquadlem3 15404 bj-nnor 15464 |
| Copyright terms: Public domain | W3C validator |