Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imnan | GIF version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 627 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | 2 | con2i 617 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
4 | pm3.2 138 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | con3rr3 623 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 3, 5 | impbii 125 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imnani 681 nan 682 pm3.24 683 imanst 874 ianordc 885 pm5.17dc 890 dn1dc 945 xorbin 1366 xordc1 1375 alinexa 1583 dfrex2dc 2448 ralinexa 2484 rabeq0 3423 disj 3442 minel 3455 disjsn 3621 sotricim 4282 poirr2 4975 funun 5211 imadiflem 5246 imadif 5247 brprcneu 5458 prltlu 7390 caucvgprlemnbj 7570 caucvgprprlemnbj 7596 suplocexprlemmu 7621 xrltnsym2 9683 fzp1nel 9988 fsumsplit 11286 sumsplitdc 11311 phiprmpw 12074 bj-nnor 13270 |
Copyright terms: Public domain | W3C validator |