| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | 2 | con2i 628 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | con3rr3 634 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 692 nan 693 pm3.24 694 imanst 889 ianordc 900 pm5.17dc 905 dn1dc 962 xorbin 1403 xordc1 1412 alinexa 1625 dfrex2dc 2496 ralinexa 2532 rabeq0 3489 disj 3508 minel 3521 disjsn 3694 sotricim 4369 poirr2 5074 funun 5314 imadiflem 5352 imadif 5353 brprcneu 5568 2omotaplemap 7368 prltlu 7599 caucvgprlemnbj 7779 caucvgprprlemnbj 7805 suplocexprlemmu 7830 xrltnsym2 9915 fzp1nel 10225 fsumsplit 11689 sumsplitdc 11714 phiprmpw 12515 odzdvds 12539 pcdvdsb 12614 lgsne0 15486 lgsquadlem3 15527 bj-nnor 15632 |
| Copyright terms: Public domain | W3C validator |