| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imnan | GIF version | ||
| Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
| 2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
| 3 | 2 | con2i 628 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| 4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
| 5 | 4 | con3rr3 634 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
| 6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: imnani 693 nan 694 pm3.24 695 imanst 890 ianordc 901 pm5.17dc 906 dn1dc 963 xorbin 1404 xordc1 1413 alinexa 1627 dfrex2dc 2499 ralinexa 2535 rabeq0 3498 disj 3517 minel 3530 disjsn 3705 sotricim 4388 poirr2 5094 funun 5334 imadiflem 5372 imadif 5373 brprcneu 5592 2omotaplemap 7404 prltlu 7635 caucvgprlemnbj 7815 caucvgprprlemnbj 7841 suplocexprlemmu 7866 xrltnsym2 9951 fzp1nel 10261 fsumsplit 11833 sumsplitdc 11858 phiprmpw 12659 odzdvds 12683 pcdvdsb 12758 lgsne0 15630 lgsquadlem3 15671 bj-nnor 15870 |
| Copyright terms: Public domain | W3C validator |