Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imnan | GIF version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 627 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 123 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | 2 | con2i 617 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
4 | pm3.2 138 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | con3rr3 623 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 3, 5 | impbii 125 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: imnani 681 nan 682 pm3.24 683 imanst 878 ianordc 889 pm5.17dc 894 dn1dc 950 xorbin 1374 xordc1 1383 alinexa 1591 dfrex2dc 2456 ralinexa 2492 rabeq0 3437 disj 3456 minel 3469 disjsn 3637 sotricim 4300 poirr2 4995 funun 5231 imadiflem 5266 imadif 5267 brprcneu 5478 prltlu 7424 caucvgprlemnbj 7604 caucvgprprlemnbj 7630 suplocexprlemmu 7655 xrltnsym2 9726 fzp1nel 10035 fsumsplit 11344 sumsplitdc 11369 phiprmpw 12150 odzdvds 12173 pcdvdsb 12247 lgsne0 13539 bj-nnor 13575 |
Copyright terms: Public domain | W3C validator |