![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imnan | GIF version |
Description: Express implication in terms of conjunction. (Contributed by NM, 9-Apr-1994.) (Revised by Mario Carneiro, 1-Feb-2015.) |
Ref | Expression |
---|---|
imnan | ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 638 | . . . 4 ⊢ (𝜑 → (𝜓 → ¬ (𝜑 → ¬ 𝜓))) | |
2 | 1 | imp 124 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → ¬ (𝜑 → ¬ 𝜓)) |
3 | 2 | con2i 628 | . 2 ⊢ ((𝜑 → ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
4 | pm3.2 139 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜓))) | |
5 | 4 | con3rr3 634 | . 2 ⊢ (¬ (𝜑 ∧ 𝜓) → (𝜑 → ¬ 𝜓)) |
6 | 3, 5 | impbii 126 | 1 ⊢ ((𝜑 → ¬ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: imnani 692 nan 693 pm3.24 694 imanst 889 ianordc 900 pm5.17dc 905 dn1dc 962 xorbin 1395 xordc1 1404 alinexa 1614 dfrex2dc 2485 ralinexa 2521 rabeq0 3477 disj 3496 minel 3509 disjsn 3681 sotricim 4355 poirr2 5059 funun 5299 imadiflem 5334 imadif 5335 brprcneu 5548 2omotaplemap 7319 prltlu 7549 caucvgprlemnbj 7729 caucvgprprlemnbj 7755 suplocexprlemmu 7780 xrltnsym2 9863 fzp1nel 10173 fsumsplit 11553 sumsplitdc 11578 phiprmpw 12363 odzdvds 12386 pcdvdsb 12461 lgsne0 15195 lgsquadlem3 15236 bj-nnor 15296 |
Copyright terms: Public domain | W3C validator |