| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecase2d | GIF version | ||
| Description: Deduction for elimination by cases. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| ecase2d.1 | ⊢ (𝜑 → 𝜓) |
| ecase2d.2 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) |
| ecase2d.3 | ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) |
| ecase2d.4 | ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) |
| Ref | Expression |
|---|---|
| ecase2d | ⊢ (𝜑 → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ecase2d.1 | . . . 4 ⊢ (𝜑 → 𝜓) | |
| 2 | ecase2d.2 | . . . 4 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜒)) | |
| 3 | 1, 2 | mpnanrd 697 | . . 3 ⊢ (𝜑 → ¬ 𝜒) |
| 4 | ecase2d.3 | . . . 4 ⊢ (𝜑 → ¬ (𝜓 ∧ 𝜃)) | |
| 5 | 1, 4 | mpnanrd 697 | . . 3 ⊢ (𝜑 → ¬ 𝜃) |
| 6 | ioran 757 | . . 3 ⊢ (¬ (𝜒 ∨ 𝜃) ↔ (¬ 𝜒 ∧ ¬ 𝜃)) | |
| 7 | 3, 5, 6 | sylanbrc 417 | . 2 ⊢ (𝜑 → ¬ (𝜒 ∨ 𝜃)) |
| 8 | ecase2d.4 | . 2 ⊢ (𝜑 → (𝜏 ∨ (𝜒 ∨ 𝜃))) | |
| 9 | 7, 8 | ecased 1383 | 1 ⊢ (𝜑 → 𝜏) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |