ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  necon3bbii GIF version

Theorem necon3bbii 2377
Description: Deduction from equality to inequality. (Contributed by NM, 13-Apr-2007.)
Hypothesis
Ref Expression
necon3bbii.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
necon3bbii 𝜑𝐴𝐵)

Proof of Theorem necon3bbii
StepHypRef Expression
1 necon3bbii.1 . . . 4 (𝜑𝐴 = 𝐵)
21bicomi 131 . . 3 (𝐴 = 𝐵𝜑)
32necon3abii 2376 . 2 (𝐴𝐵 ↔ ¬ 𝜑)
43bicomi 131 1 𝜑𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104   = wceq 1348  wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  ef0lem  11623
  Copyright terms: Public domain W3C validator