| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
(ℤ≥‘0)) | 
| 2 |   | nn0uz 9636 | 
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) | 
| 3 | 1, 2 | eleqtrrdi 2290 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
ℕ0) | 
| 4 |   | elnn0 9251 | 
. . . . 5
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) | 
| 5 | 3, 4 | sylib 122 | 
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) | 
| 6 |   | 0cnd 8019 | 
. . . . . . . . 9
⊢ (𝐴 = 0 → 0 ∈
ℂ) | 
| 7 |   | eleq1 2259 | 
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈
ℂ)) | 
| 8 | 6, 7 | mpbird 167 | 
. . . . . . . 8
⊢ (𝐴 = 0 → 𝐴 ∈ ℂ) | 
| 9 |   | nnnn0 9256 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) | 
| 10 | 9 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) | 
| 11 |   | efcllem.1 | 
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) | 
| 12 | 11 | eftvalcn 11822 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 13 | 8, 10, 12 | syl2an2r 595 | 
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 14 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑𝑘) = (0↑𝑘)) | 
| 15 |   | 0exp 10666 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(0↑𝑘) =
0) | 
| 16 | 14, 15 | sylan9eq 2249 | 
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) = 0) | 
| 17 | 16 | oveq1d 5937 | 
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) | 
| 18 |   | faccl 10827 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) | 
| 19 |   | nncn 8998 | 
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
∈ ℂ) | 
| 20 |   | nnap0 9019 | 
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
# 0) | 
| 21 | 19, 20 | div0apd 8814 | 
. . . . . . . 8
⊢
((!‘𝑘) ∈
ℕ → (0 / (!‘𝑘)) = 0) | 
| 22 | 10, 18, 21 | 3syl 17 | 
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0) | 
| 23 | 13, 17, 22 | 3eqtrd 2233 | 
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 0) | 
| 24 |   | nnne0 9018 | 
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) | 
| 25 |   | velsn 3639 | 
. . . . . . . . . 10
⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) | 
| 26 | 25 | necon3bbii 2404 | 
. . . . . . . . 9
⊢ (¬
𝑘 ∈ {0} ↔ 𝑘 ≠ 0) | 
| 27 | 24, 26 | sylibr 134 | 
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ¬
𝑘 ∈
{0}) | 
| 28 | 27 | adantl 277 | 
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0}) | 
| 29 | 28 | iffalsed 3571 | 
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0) | 
| 30 | 23, 29 | eqtr4d 2232 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) | 
| 31 |   | fveq2 5558 | 
. . . . . . 7
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) | 
| 32 |   | 0nn0 9264 | 
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 | 
| 33 | 11 | eftvalcn 11822 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0))) | 
| 34 | 8, 32, 33 | sylancl 413 | 
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0))) | 
| 35 |   | oveq1 5929 | 
. . . . . . . . . . 11
⊢ (𝐴 = 0 → (𝐴↑0) = (0↑0)) | 
| 36 |   | 0exp0e1 10636 | 
. . . . . . . . . . 11
⊢
(0↑0) = 1 | 
| 37 | 35, 36 | eqtrdi 2245 | 
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑0) = 1) | 
| 38 | 37 | oveq1d 5937 | 
. . . . . . . . 9
⊢ (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 /
(!‘0))) | 
| 39 | 34, 38 | eqtrd 2229 | 
. . . . . . . 8
⊢ (𝐴 = 0 → (𝐹‘0) = (1 /
(!‘0))) | 
| 40 |   | fac0 10820 | 
. . . . . . . . . 10
⊢
(!‘0) = 1 | 
| 41 | 40 | oveq2i 5933 | 
. . . . . . . . 9
⊢ (1 /
(!‘0)) = (1 / 1) | 
| 42 |   | 1div1e1 8731 | 
. . . . . . . . 9
⊢ (1 / 1) =
1 | 
| 43 | 41, 42 | eqtr2i 2218 | 
. . . . . . . 8
⊢ 1 = (1 /
(!‘0)) | 
| 44 | 39, 43 | eqtr4di 2247 | 
. . . . . . 7
⊢ (𝐴 = 0 → (𝐹‘0) = 1) | 
| 45 | 31, 44 | sylan9eqr 2251 | 
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = 1) | 
| 46 |   | simpr 110 | 
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0) | 
| 47 | 46, 25 | sylibr 134 | 
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0}) | 
| 48 | 47 | iftrued 3568 | 
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1) | 
| 49 | 45, 48 | eqtr4d 2232 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) | 
| 50 | 30, 49 | jaodan 798 | 
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) | 
| 51 | 5, 50 | syldan 282 | 
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) | 
| 52 | 32, 2 | eleqtri 2271 | 
. . . 4
⊢ 0 ∈
(ℤ≥‘0) | 
| 53 | 52 | a1i 9 | 
. . 3
⊢ (𝐴 = 0 → 0 ∈
(ℤ≥‘0)) | 
| 54 |   | 1cnd 8042 | 
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈
ℂ) | 
| 55 | 25 | biimpri 133 | 
. . . . . . 7
⊢ (𝑘 = 0 → 𝑘 ∈ {0}) | 
| 56 | 27, 55 | orim12i 760 | 
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0})) | 
| 57 | 5, 56 | syl 14 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (¬ 𝑘 ∈ {0}
∨ 𝑘 ∈
{0})) | 
| 58 | 57 | orcomd 730 | 
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ {0} ∨
¬ 𝑘 ∈
{0})) | 
| 59 |   | df-dc 836 | 
. . . 4
⊢
(DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0})) | 
| 60 | 58, 59 | sylibr 134 | 
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ DECID 𝑘 ∈ {0}) | 
| 61 |   | 0z 9337 | 
. . . . . 6
⊢ 0 ∈
ℤ | 
| 62 |   | fzsn 10141 | 
. . . . . 6
⊢ (0 ∈
ℤ → (0...0) = {0}) | 
| 63 | 61, 62 | ax-mp 5 | 
. . . . 5
⊢ (0...0) =
{0} | 
| 64 | 63 | eqimss2i 3240 | 
. . . 4
⊢ {0}
⊆ (0...0) | 
| 65 | 64 | a1i 9 | 
. . 3
⊢ (𝐴 = 0 → {0} ⊆
(0...0)) | 
| 66 | 51, 53, 54, 60, 65 | fsum3cvg2 11559 | 
. 2
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0)) | 
| 67 | 61 | a1i 9 | 
. . . 4
⊢ (𝐴 = 0 → 0 ∈
ℤ) | 
| 68 | 8, 3, 12 | syl2an2r 595 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) | 
| 69 |   | eftcl 11819 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 70 | 8, 3, 69 | syl2an2r 595 | 
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) | 
| 71 | 68, 70 | eqeltrd 2273 | 
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) ∈
ℂ) | 
| 72 |   | addcl 8004 | 
. . . . 5
⊢ ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ) | 
| 73 | 72 | adantl 277 | 
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ) | 
| 74 | 67, 71, 73 | seq3-1 10554 | 
. . 3
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0)) | 
| 75 | 74, 44 | eqtrd 2229 | 
. 2
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1) | 
| 76 | 66, 75 | breqtrd 4059 | 
1
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |