ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem GIF version

Theorem ef0lem 11403
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 9384 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2234 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 9003 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 121 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 0cnd 7783 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
7 eleq1 2203 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈ ℂ))
86, 7mpbird 166 . . . . . . . 8 (𝐴 = 0 → 𝐴 ∈ ℂ)
9 nnnn0 9008 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
109adantl 275 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
11 efcllem.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1211eftvalcn 11400 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
138, 10, 12syl2an2r 585 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 oveq1 5789 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
15 0exp 10359 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1614, 15sylan9eq 2193 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1716oveq1d 5797 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
18 faccl 10513 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
19 nncn 8752 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
20 nnap0 8773 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) # 0)
2119, 20div0apd 8571 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
2210, 18, 213syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2313, 17, 223eqtrd 2177 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
24 nnne0 8772 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
25 velsn 3549 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2625necon3bbii 2346 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2724, 26sylibr 133 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2827adantl 275 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2928iffalsed 3489 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
3023, 29eqtr4d 2176 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
31 fveq2 5429 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
32 0nn0 9016 . . . . . . . . . 10 0 ∈ ℕ0
3311eftvalcn 11400 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
348, 32, 33sylancl 410 . . . . . . . . 9 (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
35 oveq1 5789 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑0) = (0↑0))
36 0exp0e1 10329 . . . . . . . . . . 11 (0↑0) = 1
3735, 36eqtrdi 2189 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = 1)
3837oveq1d 5797 . . . . . . . . 9 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
3934, 38eqtrd 2173 . . . . . . . 8 (𝐴 = 0 → (𝐹‘0) = (1 / (!‘0)))
40 fac0 10506 . . . . . . . . . 10 (!‘0) = 1
4140oveq2i 5793 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
42 1div1e1 8488 . . . . . . . . 9 (1 / 1) = 1
4341, 42eqtr2i 2162 . . . . . . . 8 1 = (1 / (!‘0))
4439, 43eqtr4di 2191 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4531, 44sylan9eqr 2195 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
46 simpr 109 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4746, 25sylibr 133 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4847iftrued 3486 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4945, 48eqtr4d 2176 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5030, 49jaodan 787 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
515, 50syldan 280 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5232, 2eleqtri 2215 . . . 4 0 ∈ (ℤ‘0)
5352a1i 9 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
54 1cnd 7806 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
5525biimpri 132 . . . . . . 7 (𝑘 = 0 → 𝑘 ∈ {0})
5627, 55orim12i 749 . . . . . 6 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
575, 56syl 14 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
5857orcomd 719 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
59 df-dc 821 . . . 4 (DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
6058, 59sylibr 133 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → DECID 𝑘 ∈ {0})
61 0z 9089 . . . . . 6 0 ∈ ℤ
62 fzsn 9877 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
6361, 62ax-mp 5 . . . . 5 (0...0) = {0}
6463eqimss2i 3159 . . . 4 {0} ⊆ (0...0)
6564a1i 9 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
6651, 53, 54, 60, 65fsum3cvg2 11195 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
6761a1i 9 . . . 4 (𝐴 = 0 → 0 ∈ ℤ)
688, 3, 12syl2an2r 585 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
69 eftcl 11397 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
708, 3, 69syl2an2r 585 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
7168, 70eqeltrd 2217 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
72 addcl 7769 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
7372adantl 275 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
7467, 71, 73seq3-1 10264 . . 3 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0))
7574, 44eqtrd 2173 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
7666, 75breqtrd 3962 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 820   = wceq 1332  wcel 1481  wne 2309  wss 3076  ifcif 3479  {csn 3532   class class class wbr 3937  cmpt 3997  cfv 5131  (class class class)co 5782  cc 7642  0cc0 7644  1c1 7645   + caddc 7647   / cdiv 8456  cn 8744  0cn0 9001  cz 9078  cuz 9350  ...cfz 9821  seqcseq 10249  cexp 10323  !cfa 10503  cli 11079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-fz 9822  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-cj 10646  df-rsqrt 10802  df-abs 10803  df-clim 11080
This theorem is referenced by:  ef0  11415
  Copyright terms: Public domain W3C validator