Step | Hyp | Ref
| Expression |
1 | | simpr 109 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
(ℤ≥‘0)) |
2 | | nn0uz 9500 |
. . . . . 6
⊢
ℕ0 = (ℤ≥‘0) |
3 | 1, 2 | eleqtrrdi 2260 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ 𝑘 ∈
ℕ0) |
4 | | elnn0 9116 |
. . . . 5
⊢ (𝑘 ∈ ℕ0
↔ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
5 | 3, 4 | sylib 121 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ ℕ
∨ 𝑘 =
0)) |
6 | | 0cnd 7892 |
. . . . . . . . 9
⊢ (𝐴 = 0 → 0 ∈
ℂ) |
7 | | eleq1 2229 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈
ℂ)) |
8 | 6, 7 | mpbird 166 |
. . . . . . . 8
⊢ (𝐴 = 0 → 𝐴 ∈ ℂ) |
9 | | nnnn0 9121 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ∈
ℕ0) |
10 | 9 | adantl 275 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0) |
11 | | efcllem.1 |
. . . . . . . . 9
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) |
12 | 11 | eftvalcn 11598 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
13 | 8, 10, 12 | syl2an2r 585 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
14 | | oveq1 5849 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐴↑𝑘) = (0↑𝑘)) |
15 | | 0exp 10490 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ →
(0↑𝑘) =
0) |
16 | 14, 15 | sylan9eq 2219 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴↑𝑘) = 0) |
17 | 16 | oveq1d 5857 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴↑𝑘) / (!‘𝑘)) = (0 / (!‘𝑘))) |
18 | | faccl 10648 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ0
→ (!‘𝑘) ∈
ℕ) |
19 | | nncn 8865 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
∈ ℂ) |
20 | | nnap0 8886 |
. . . . . . . . 9
⊢
((!‘𝑘) ∈
ℕ → (!‘𝑘)
# 0) |
21 | 19, 20 | div0apd 8683 |
. . . . . . . 8
⊢
((!‘𝑘) ∈
ℕ → (0 / (!‘𝑘)) = 0) |
22 | 10, 18, 21 | 3syl 17 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0) |
23 | 13, 17, 22 | 3eqtrd 2202 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = 0) |
24 | | nnne0 8885 |
. . . . . . . . 9
⊢ (𝑘 ∈ ℕ → 𝑘 ≠ 0) |
25 | | velsn 3593 |
. . . . . . . . . 10
⊢ (𝑘 ∈ {0} ↔ 𝑘 = 0) |
26 | 25 | necon3bbii 2373 |
. . . . . . . . 9
⊢ (¬
𝑘 ∈ {0} ↔ 𝑘 ≠ 0) |
27 | 24, 26 | sylibr 133 |
. . . . . . . 8
⊢ (𝑘 ∈ ℕ → ¬
𝑘 ∈
{0}) |
28 | 27 | adantl 275 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0}) |
29 | 28 | iffalsed 3530 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0) |
30 | 23, 29 | eqtr4d 2201 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
31 | | fveq2 5486 |
. . . . . . 7
⊢ (𝑘 = 0 → (𝐹‘𝑘) = (𝐹‘0)) |
32 | | 0nn0 9129 |
. . . . . . . . . 10
⊢ 0 ∈
ℕ0 |
33 | 11 | eftvalcn 11598 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ 0 ∈
ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0))) |
34 | 8, 32, 33 | sylancl 410 |
. . . . . . . . 9
⊢ (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0))) |
35 | | oveq1 5849 |
. . . . . . . . . . 11
⊢ (𝐴 = 0 → (𝐴↑0) = (0↑0)) |
36 | | 0exp0e1 10460 |
. . . . . . . . . . 11
⊢
(0↑0) = 1 |
37 | 35, 36 | eqtrdi 2215 |
. . . . . . . . . 10
⊢ (𝐴 = 0 → (𝐴↑0) = 1) |
38 | 37 | oveq1d 5857 |
. . . . . . . . 9
⊢ (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 /
(!‘0))) |
39 | 34, 38 | eqtrd 2198 |
. . . . . . . 8
⊢ (𝐴 = 0 → (𝐹‘0) = (1 /
(!‘0))) |
40 | | fac0 10641 |
. . . . . . . . . 10
⊢
(!‘0) = 1 |
41 | 40 | oveq2i 5853 |
. . . . . . . . 9
⊢ (1 /
(!‘0)) = (1 / 1) |
42 | | 1div1e1 8600 |
. . . . . . . . 9
⊢ (1 / 1) =
1 |
43 | 41, 42 | eqtr2i 2187 |
. . . . . . . 8
⊢ 1 = (1 /
(!‘0)) |
44 | 39, 43 | eqtr4di 2217 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐹‘0) = 1) |
45 | 31, 44 | sylan9eqr 2221 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = 1) |
46 | | simpr 109 |
. . . . . . . 8
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0) |
47 | 46, 25 | sylibr 133 |
. . . . . . 7
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0}) |
48 | 47 | iftrued 3527 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1) |
49 | 45, 48 | eqtr4d 2201 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
50 | 30, 49 | jaodan 787 |
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
51 | 5, 50 | syldan 280 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = if(𝑘 ∈ {0}, 1, 0)) |
52 | 32, 2 | eleqtri 2241 |
. . . 4
⊢ 0 ∈
(ℤ≥‘0) |
53 | 52 | a1i 9 |
. . 3
⊢ (𝐴 = 0 → 0 ∈
(ℤ≥‘0)) |
54 | | 1cnd 7915 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈
ℂ) |
55 | 25 | biimpri 132 |
. . . . . . 7
⊢ (𝑘 = 0 → 𝑘 ∈ {0}) |
56 | 27, 55 | orim12i 749 |
. . . . . 6
⊢ ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0})) |
57 | 5, 56 | syl 14 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (¬ 𝑘 ∈ {0}
∨ 𝑘 ∈
{0})) |
58 | 57 | orcomd 719 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝑘 ∈ {0} ∨
¬ 𝑘 ∈
{0})) |
59 | | df-dc 825 |
. . . 4
⊢
(DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0})) |
60 | 58, 59 | sylibr 133 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ DECID 𝑘 ∈ {0}) |
61 | | 0z 9202 |
. . . . . 6
⊢ 0 ∈
ℤ |
62 | | fzsn 10001 |
. . . . . 6
⊢ (0 ∈
ℤ → (0...0) = {0}) |
63 | 61, 62 | ax-mp 5 |
. . . . 5
⊢ (0...0) =
{0} |
64 | 63 | eqimss2i 3199 |
. . . 4
⊢ {0}
⊆ (0...0) |
65 | 64 | a1i 9 |
. . 3
⊢ (𝐴 = 0 → {0} ⊆
(0...0)) |
66 | 51, 53, 54, 60, 65 | fsum3cvg2 11335 |
. 2
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0)) |
67 | 61 | a1i 9 |
. . . 4
⊢ (𝐴 = 0 → 0 ∈
ℤ) |
68 | 8, 3, 12 | syl2an2r 585 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) = ((𝐴↑𝑘) / (!‘𝑘))) |
69 | | eftcl 11595 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
70 | 8, 3, 69 | syl2an2r 585 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ ((𝐴↑𝑘) / (!‘𝑘)) ∈ ℂ) |
71 | 68, 70 | eqeltrd 2243 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ≥‘0))
→ (𝐹‘𝑘) ∈
ℂ) |
72 | | addcl 7878 |
. . . . 5
⊢ ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ) |
73 | 72 | adantl 275 |
. . . 4
⊢ ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ) |
74 | 67, 71, 73 | seq3-1 10395 |
. . 3
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0)) |
75 | 74, 44 | eqtrd 2198 |
. 2
⊢ (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1) |
76 | 66, 75 | breqtrd 4008 |
1
⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |