ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem GIF version

Theorem ef0lem 12157
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 9745 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2323 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 9359 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 122 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 0cnd 8127 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
7 eleq1 2292 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈ ℂ))
86, 7mpbird 167 . . . . . . . 8 (𝐴 = 0 → 𝐴 ∈ ℂ)
9 nnnn0 9364 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
109adantl 277 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
11 efcllem.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1211eftvalcn 12154 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
138, 10, 12syl2an2r 597 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 oveq1 6001 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
15 0exp 10783 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1614, 15sylan9eq 2282 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1716oveq1d 6009 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
18 faccl 10944 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
19 nncn 9106 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
20 nnap0 9127 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) # 0)
2119, 20div0apd 8922 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
2210, 18, 213syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2313, 17, 223eqtrd 2266 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
24 nnne0 9126 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
25 velsn 3683 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2625necon3bbii 2437 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2724, 26sylibr 134 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2827adantl 277 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2928iffalsed 3612 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
3023, 29eqtr4d 2265 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
31 fveq2 5623 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
32 0nn0 9372 . . . . . . . . . 10 0 ∈ ℕ0
3311eftvalcn 12154 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
348, 32, 33sylancl 413 . . . . . . . . 9 (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
35 oveq1 6001 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑0) = (0↑0))
36 0exp0e1 10753 . . . . . . . . . . 11 (0↑0) = 1
3735, 36eqtrdi 2278 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = 1)
3837oveq1d 6009 . . . . . . . . 9 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
3934, 38eqtrd 2262 . . . . . . . 8 (𝐴 = 0 → (𝐹‘0) = (1 / (!‘0)))
40 fac0 10937 . . . . . . . . . 10 (!‘0) = 1
4140oveq2i 6005 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
42 1div1e1 8839 . . . . . . . . 9 (1 / 1) = 1
4341, 42eqtr2i 2251 . . . . . . . 8 1 = (1 / (!‘0))
4439, 43eqtr4di 2280 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4531, 44sylan9eqr 2284 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
46 simpr 110 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4746, 25sylibr 134 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4847iftrued 3609 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4945, 48eqtr4d 2265 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5030, 49jaodan 802 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
515, 50syldan 282 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5232, 2eleqtri 2304 . . . 4 0 ∈ (ℤ‘0)
5352a1i 9 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
54 1cnd 8150 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
5525biimpri 133 . . . . . . 7 (𝑘 = 0 → 𝑘 ∈ {0})
5627, 55orim12i 764 . . . . . 6 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
575, 56syl 14 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
5857orcomd 734 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
59 df-dc 840 . . . 4 (DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
6058, 59sylibr 134 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → DECID 𝑘 ∈ {0})
61 0z 9445 . . . . . 6 0 ∈ ℤ
62 fzsn 10250 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
6361, 62ax-mp 5 . . . . 5 (0...0) = {0}
6463eqimss2i 3281 . . . 4 {0} ⊆ (0...0)
6564a1i 9 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
6651, 53, 54, 60, 65fsum3cvg2 11891 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
6761a1i 9 . . . 4 (𝐴 = 0 → 0 ∈ ℤ)
688, 3, 12syl2an2r 597 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
69 eftcl 12151 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
708, 3, 69syl2an2r 597 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
7168, 70eqeltrd 2306 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
72 addcl 8112 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
7372adantl 277 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
7467, 71, 73seq3-1 10671 . . 3 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0))
7574, 44eqtrd 2262 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
7666, 75breqtrd 4108 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  DECID wdc 839   = wceq 1395  wcel 2200  wne 2400  wss 3197  ifcif 3602  {csn 3666   class class class wbr 4082  cmpt 4144  cfv 5314  (class class class)co 5994  cc 7985  0cc0 7987  1c1 7988   + caddc 7990   / cdiv 8807  cn 9098  0cn0 9357  cz 9434  cuz 9710  ...cfz 10192  seqcseq 10656  cexp 10747  !cfa 10934  cli 11775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-rp 9838  df-fz 10193  df-seqfrec 10657  df-exp 10748  df-fac 10935  df-cj 11339  df-rsqrt 11495  df-abs 11496  df-clim 11776
This theorem is referenced by:  ef0  12169
  Copyright terms: Public domain W3C validator