ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem GIF version

Theorem ef0lem 11652
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 9551 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2271 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 9167 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 122 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 0cnd 7941 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
7 eleq1 2240 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈ ℂ))
86, 7mpbird 167 . . . . . . . 8 (𝐴 = 0 → 𝐴 ∈ ℂ)
9 nnnn0 9172 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
109adantl 277 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
11 efcllem.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1211eftvalcn 11649 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
138, 10, 12syl2an2r 595 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 oveq1 5876 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
15 0exp 10541 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1614, 15sylan9eq 2230 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1716oveq1d 5884 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
18 faccl 10699 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
19 nncn 8916 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
20 nnap0 8937 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) # 0)
2119, 20div0apd 8733 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
2210, 18, 213syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2313, 17, 223eqtrd 2214 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
24 nnne0 8936 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
25 velsn 3608 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2625necon3bbii 2384 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2724, 26sylibr 134 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2827adantl 277 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2928iffalsed 3544 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
3023, 29eqtr4d 2213 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
31 fveq2 5511 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
32 0nn0 9180 . . . . . . . . . 10 0 ∈ ℕ0
3311eftvalcn 11649 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
348, 32, 33sylancl 413 . . . . . . . . 9 (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
35 oveq1 5876 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑0) = (0↑0))
36 0exp0e1 10511 . . . . . . . . . . 11 (0↑0) = 1
3735, 36eqtrdi 2226 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = 1)
3837oveq1d 5884 . . . . . . . . 9 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
3934, 38eqtrd 2210 . . . . . . . 8 (𝐴 = 0 → (𝐹‘0) = (1 / (!‘0)))
40 fac0 10692 . . . . . . . . . 10 (!‘0) = 1
4140oveq2i 5880 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
42 1div1e1 8650 . . . . . . . . 9 (1 / 1) = 1
4341, 42eqtr2i 2199 . . . . . . . 8 1 = (1 / (!‘0))
4439, 43eqtr4di 2228 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4531, 44sylan9eqr 2232 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
46 simpr 110 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4746, 25sylibr 134 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4847iftrued 3541 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4945, 48eqtr4d 2213 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5030, 49jaodan 797 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
515, 50syldan 282 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5232, 2eleqtri 2252 . . . 4 0 ∈ (ℤ‘0)
5352a1i 9 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
54 1cnd 7964 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
5525biimpri 133 . . . . . . 7 (𝑘 = 0 → 𝑘 ∈ {0})
5627, 55orim12i 759 . . . . . 6 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
575, 56syl 14 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
5857orcomd 729 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
59 df-dc 835 . . . 4 (DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
6058, 59sylibr 134 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → DECID 𝑘 ∈ {0})
61 0z 9253 . . . . . 6 0 ∈ ℤ
62 fzsn 10052 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
6361, 62ax-mp 5 . . . . 5 (0...0) = {0}
6463eqimss2i 3212 . . . 4 {0} ⊆ (0...0)
6564a1i 9 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
6651, 53, 54, 60, 65fsum3cvg2 11386 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
6761a1i 9 . . . 4 (𝐴 = 0 → 0 ∈ ℤ)
688, 3, 12syl2an2r 595 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
69 eftcl 11646 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
708, 3, 69syl2an2r 595 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
7168, 70eqeltrd 2254 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
72 addcl 7927 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
7372adantl 277 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
7467, 71, 73seq3-1 10446 . . 3 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0))
7574, 44eqtrd 2210 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
7666, 75breqtrd 4026 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wss 3129  ifcif 3534  {csn 3591   class class class wbr 4000  cmpt 4061  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cuz 9517  ...cfz 9995  seqcseq 10431  cexp 10505  !cfa 10689  cli 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-fz 9996  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-cj 10835  df-rsqrt 10991  df-abs 10992  df-clim 11271
This theorem is referenced by:  ef0  11664
  Copyright terms: Public domain W3C validator