ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem GIF version

Theorem ef0lem 11601
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 9500 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2260 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 9116 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 121 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 0cnd 7892 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
7 eleq1 2229 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈ ℂ))
86, 7mpbird 166 . . . . . . . 8 (𝐴 = 0 → 𝐴 ∈ ℂ)
9 nnnn0 9121 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
109adantl 275 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
11 efcllem.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1211eftvalcn 11598 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
138, 10, 12syl2an2r 585 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 oveq1 5849 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
15 0exp 10490 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1614, 15sylan9eq 2219 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1716oveq1d 5857 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
18 faccl 10648 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
19 nncn 8865 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
20 nnap0 8886 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) # 0)
2119, 20div0apd 8683 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
2210, 18, 213syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2313, 17, 223eqtrd 2202 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
24 nnne0 8885 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
25 velsn 3593 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2625necon3bbii 2373 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2724, 26sylibr 133 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2827adantl 275 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2928iffalsed 3530 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
3023, 29eqtr4d 2201 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
31 fveq2 5486 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
32 0nn0 9129 . . . . . . . . . 10 0 ∈ ℕ0
3311eftvalcn 11598 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
348, 32, 33sylancl 410 . . . . . . . . 9 (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
35 oveq1 5849 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑0) = (0↑0))
36 0exp0e1 10460 . . . . . . . . . . 11 (0↑0) = 1
3735, 36eqtrdi 2215 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = 1)
3837oveq1d 5857 . . . . . . . . 9 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
3934, 38eqtrd 2198 . . . . . . . 8 (𝐴 = 0 → (𝐹‘0) = (1 / (!‘0)))
40 fac0 10641 . . . . . . . . . 10 (!‘0) = 1
4140oveq2i 5853 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
42 1div1e1 8600 . . . . . . . . 9 (1 / 1) = 1
4341, 42eqtr2i 2187 . . . . . . . 8 1 = (1 / (!‘0))
4439, 43eqtr4di 2217 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4531, 44sylan9eqr 2221 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
46 simpr 109 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4746, 25sylibr 133 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4847iftrued 3527 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4945, 48eqtr4d 2201 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5030, 49jaodan 787 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
515, 50syldan 280 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5232, 2eleqtri 2241 . . . 4 0 ∈ (ℤ‘0)
5352a1i 9 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
54 1cnd 7915 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
5525biimpri 132 . . . . . . 7 (𝑘 = 0 → 𝑘 ∈ {0})
5627, 55orim12i 749 . . . . . 6 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
575, 56syl 14 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
5857orcomd 719 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
59 df-dc 825 . . . 4 (DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
6058, 59sylibr 133 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → DECID 𝑘 ∈ {0})
61 0z 9202 . . . . . 6 0 ∈ ℤ
62 fzsn 10001 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
6361, 62ax-mp 5 . . . . 5 (0...0) = {0}
6463eqimss2i 3199 . . . 4 {0} ⊆ (0...0)
6564a1i 9 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
6651, 53, 54, 60, 65fsum3cvg2 11335 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
6761a1i 9 . . . 4 (𝐴 = 0 → 0 ∈ ℤ)
688, 3, 12syl2an2r 585 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
69 eftcl 11595 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
708, 3, 69syl2an2r 585 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
7168, 70eqeltrd 2243 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
72 addcl 7878 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
7372adantl 275 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
7467, 71, 73seq3-1 10395 . . 3 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0))
7574, 44eqtrd 2198 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
7666, 75breqtrd 4008 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336  wss 3116  ifcif 3520  {csn 3576   class class class wbr 3982  cmpt 4043  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753  1c1 7754   + caddc 7756   / cdiv 8568  cn 8857  0cn0 9114  cz 9191  cuz 9466  ...cfz 9944  seqcseq 10380  cexp 10454  !cfa 10638  cli 11219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-exp 10455  df-fac 10639  df-cj 10784  df-rsqrt 10940  df-abs 10941  df-clim 11220
This theorem is referenced by:  ef0  11613
  Copyright terms: Public domain W3C validator