ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef0lem GIF version

Theorem ef0lem 11667
Description: The series defining the exponential function converges in the (trivial) case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.) (Revised by Mario Carneiro, 28-Apr-2014.)
Hypothesis
Ref Expression
efcllem.1 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
Assertion
Ref Expression
ef0lem (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Distinct variable group:   𝐴,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem ef0lem
Dummy variables 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ (ℤ‘0))
2 nn0uz 9561 . . . . . 6 0 = (ℤ‘0)
31, 2eleqtrrdi 2271 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → 𝑘 ∈ ℕ0)
4 elnn0 9177 . . . . 5 (𝑘 ∈ ℕ0 ↔ (𝑘 ∈ ℕ ∨ 𝑘 = 0))
53, 4sylib 122 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ ℕ ∨ 𝑘 = 0))
6 0cnd 7949 . . . . . . . . 9 (𝐴 = 0 → 0 ∈ ℂ)
7 eleq1 2240 . . . . . . . . 9 (𝐴 = 0 → (𝐴 ∈ ℂ ↔ 0 ∈ ℂ))
86, 7mpbird 167 . . . . . . . 8 (𝐴 = 0 → 𝐴 ∈ ℂ)
9 nnnn0 9182 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
109adantl 277 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → 𝑘 ∈ ℕ0)
11 efcllem.1 . . . . . . . . 9 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) / (!‘𝑛)))
1211eftvalcn 11664 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
138, 10, 12syl2an2r 595 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
14 oveq1 5881 . . . . . . . . 9 (𝐴 = 0 → (𝐴𝑘) = (0↑𝑘))
15 0exp 10554 . . . . . . . . 9 (𝑘 ∈ ℕ → (0↑𝑘) = 0)
1614, 15sylan9eq 2230 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐴𝑘) = 0)
1716oveq1d 5889 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ((𝐴𝑘) / (!‘𝑘)) = (0 / (!‘𝑘)))
18 faccl 10714 . . . . . . . 8 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
19 nncn 8926 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
20 nnap0 8947 . . . . . . . . 9 ((!‘𝑘) ∈ ℕ → (!‘𝑘) # 0)
2119, 20div0apd 8743 . . . . . . . 8 ((!‘𝑘) ∈ ℕ → (0 / (!‘𝑘)) = 0)
2210, 18, 213syl 17 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (0 / (!‘𝑘)) = 0)
2313, 17, 223eqtrd 2214 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = 0)
24 nnne0 8946 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
25 velsn 3609 . . . . . . . . . 10 (𝑘 ∈ {0} ↔ 𝑘 = 0)
2625necon3bbii 2384 . . . . . . . . 9 𝑘 ∈ {0} ↔ 𝑘 ≠ 0)
2724, 26sylibr 134 . . . . . . . 8 (𝑘 ∈ ℕ → ¬ 𝑘 ∈ {0})
2827adantl 277 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → ¬ 𝑘 ∈ {0})
2928iffalsed 3544 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ {0}, 1, 0) = 0)
3023, 29eqtr4d 2213 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ ℕ) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
31 fveq2 5515 . . . . . . 7 (𝑘 = 0 → (𝐹𝑘) = (𝐹‘0))
32 0nn0 9190 . . . . . . . . . 10 0 ∈ ℕ0
3311eftvalcn 11664 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 ∈ ℕ0) → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
348, 32, 33sylancl 413 . . . . . . . . 9 (𝐴 = 0 → (𝐹‘0) = ((𝐴↑0) / (!‘0)))
35 oveq1 5881 . . . . . . . . . . 11 (𝐴 = 0 → (𝐴↑0) = (0↑0))
36 0exp0e1 10524 . . . . . . . . . . 11 (0↑0) = 1
3735, 36eqtrdi 2226 . . . . . . . . . 10 (𝐴 = 0 → (𝐴↑0) = 1)
3837oveq1d 5889 . . . . . . . . 9 (𝐴 = 0 → ((𝐴↑0) / (!‘0)) = (1 / (!‘0)))
3934, 38eqtrd 2210 . . . . . . . 8 (𝐴 = 0 → (𝐹‘0) = (1 / (!‘0)))
40 fac0 10707 . . . . . . . . . 10 (!‘0) = 1
4140oveq2i 5885 . . . . . . . . 9 (1 / (!‘0)) = (1 / 1)
42 1div1e1 8660 . . . . . . . . 9 (1 / 1) = 1
4341, 42eqtr2i 2199 . . . . . . . 8 1 = (1 / (!‘0))
4439, 43eqtr4di 2228 . . . . . . 7 (𝐴 = 0 → (𝐹‘0) = 1)
4531, 44sylan9eqr 2232 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = 1)
46 simpr 110 . . . . . . . 8 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 = 0)
4746, 25sylibr 134 . . . . . . 7 ((𝐴 = 0 ∧ 𝑘 = 0) → 𝑘 ∈ {0})
4847iftrued 3541 . . . . . 6 ((𝐴 = 0 ∧ 𝑘 = 0) → if(𝑘 ∈ {0}, 1, 0) = 1)
4945, 48eqtr4d 2213 . . . . 5 ((𝐴 = 0 ∧ 𝑘 = 0) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5030, 49jaodan 797 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℕ ∨ 𝑘 = 0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
515, 50syldan 282 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = if(𝑘 ∈ {0}, 1, 0))
5232, 2eleqtri 2252 . . . 4 0 ∈ (ℤ‘0)
5352a1i 9 . . 3 (𝐴 = 0 → 0 ∈ (ℤ‘0))
54 1cnd 7972 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ {0}) → 1 ∈ ℂ)
5525biimpri 133 . . . . . . 7 (𝑘 = 0 → 𝑘 ∈ {0})
5627, 55orim12i 759 . . . . . 6 ((𝑘 ∈ ℕ ∨ 𝑘 = 0) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
575, 56syl 14 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (¬ 𝑘 ∈ {0} ∨ 𝑘 ∈ {0}))
5857orcomd 729 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
59 df-dc 835 . . . 4 (DECID 𝑘 ∈ {0} ↔ (𝑘 ∈ {0} ∨ ¬ 𝑘 ∈ {0}))
6058, 59sylibr 134 . . 3 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → DECID 𝑘 ∈ {0})
61 0z 9263 . . . . . 6 0 ∈ ℤ
62 fzsn 10065 . . . . . 6 (0 ∈ ℤ → (0...0) = {0})
6361, 62ax-mp 5 . . . . 5 (0...0) = {0}
6463eqimss2i 3212 . . . 4 {0} ⊆ (0...0)
6564a1i 9 . . 3 (𝐴 = 0 → {0} ⊆ (0...0))
6651, 53, 54, 60, 65fsum3cvg2 11401 . 2 (𝐴 = 0 → seq0( + , 𝐹) ⇝ (seq0( + , 𝐹)‘0))
6761a1i 9 . . . 4 (𝐴 = 0 → 0 ∈ ℤ)
688, 3, 12syl2an2r 595 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) = ((𝐴𝑘) / (!‘𝑘)))
69 eftcl 11661 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
708, 3, 69syl2an2r 595 . . . . 5 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → ((𝐴𝑘) / (!‘𝑘)) ∈ ℂ)
7168, 70eqeltrd 2254 . . . 4 ((𝐴 = 0 ∧ 𝑘 ∈ (ℤ‘0)) → (𝐹𝑘) ∈ ℂ)
72 addcl 7935 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑘 + 𝑦) ∈ ℂ)
7372adantl 277 . . . 4 ((𝐴 = 0 ∧ (𝑘 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑘 + 𝑦) ∈ ℂ)
7467, 71, 73seq3-1 10459 . . 3 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = (𝐹‘0))
7574, 44eqtrd 2210 . 2 (𝐴 = 0 → (seq0( + , 𝐹)‘0) = 1)
7666, 75breqtrd 4029 1 (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 708  DECID wdc 834   = wceq 1353  wcel 2148  wne 2347  wss 3129  ifcif 3534  {csn 3592   class class class wbr 4003  cmpt 4064  cfv 5216  (class class class)co 5874  cc 7808  0cc0 7810  1c1 7811   + caddc 7813   / cdiv 8628  cn 8918  0cn0 9175  cz 9252  cuz 9527  ...cfz 10007  seqcseq 10444  cexp 10518  !cfa 10704  cli 11285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-mulrcl 7909  ax-addcom 7910  ax-mulcom 7911  ax-addass 7912  ax-mulass 7913  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-1rid 7917  ax-0id 7918  ax-rnegex 7919  ax-precex 7920  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-apti 7925  ax-pre-ltadd 7926  ax-pre-mulgt0 7927  ax-pre-mulext 7928
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-po 4296  df-iso 4297  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-reap 8531  df-ap 8538  df-div 8629  df-inn 8919  df-2 8977  df-n0 9176  df-z 9253  df-uz 9528  df-rp 9653  df-fz 10008  df-seqfrec 10445  df-exp 10519  df-fac 10705  df-cj 10850  df-rsqrt 11006  df-abs 11007  df-clim 11286
This theorem is referenced by:  ef0  11679
  Copyright terms: Public domain W3C validator