ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nottru GIF version

Theorem nottru 1408
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
nottru (¬ ⊤ ↔ ⊥)

Proof of Theorem nottru
StepHypRef Expression
1 df-fal 1354 . 2 (⊥ ↔ ¬ ⊤)
21bicomi 131 1 (¬ ⊤ ↔ ⊥)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wtru 1349  wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-fal 1354
This theorem is referenced by:  truxortru  1414
  Copyright terms: Public domain W3C validator