| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > truxortru | GIF version | ||
| Description: A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
| Ref | Expression |
|---|---|
| truxortru | ⊢ ((⊤ ⊻ ⊤) ↔ ⊥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1418 | . 2 ⊢ ((⊤ ⊻ ⊤) ↔ ((⊤ ∨ ⊤) ∧ ¬ (⊤ ∧ ⊤))) | |
| 2 | oridm 762 | . . 3 ⊢ ((⊤ ∨ ⊤) ↔ ⊤) | |
| 3 | nottru 1455 | . . . 4 ⊢ (¬ ⊤ ↔ ⊥) | |
| 4 | anidm 396 | . . . 4 ⊢ ((⊤ ∧ ⊤) ↔ ⊤) | |
| 5 | 3, 4 | xchnxbir 685 | . . 3 ⊢ (¬ (⊤ ∧ ⊤) ↔ ⊥) |
| 6 | 2, 5 | anbi12i 460 | . 2 ⊢ (((⊤ ∨ ⊤) ∧ ¬ (⊤ ∧ ⊤)) ↔ (⊤ ∧ ⊥)) |
| 7 | truan 1412 | . 2 ⊢ ((⊤ ∧ ⊥) ↔ ⊥) | |
| 8 | 1, 6, 7 | 3bitri 206 | 1 ⊢ ((⊤ ⊻ ⊤) ↔ ⊥) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 104 ↔ wb 105 ∨ wo 713 ⊤wtru 1396 ⊥wfal 1400 ⊻ wxo 1417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-xor 1418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |