ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  notfal GIF version

Theorem notfal 1409
Description: A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
notfal (¬ ⊥ ↔ ⊤)

Proof of Theorem notfal
StepHypRef Expression
1 fal 1355 . 2 ¬ ⊥
21bitru 1360 1 (¬ ⊥ ↔ ⊤)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wb 104  wtru 1349  wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  truxorfal  1415  falxortru  1416  falxorfal  1417
  Copyright terms: Public domain W3C validator