ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nrexrmo GIF version

Theorem nrexrmo 2686
Description: Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
nrexrmo (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)

Proof of Theorem nrexrmo
StepHypRef Expression
1 pm2.21 612 . 2 (¬ ∃𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
2 rmo5 2685 . 2 (∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
31, 2sylibr 133 1 (¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wrex 2449  ∃!wreu 2450  ∃*wrmo 2451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-mo 2023  df-rex 2454  df-reu 2455  df-rmo 2456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator