| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-reu | GIF version | ||
| Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wreu 2477 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | weu 2045 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: nfreu1 2669 nfreudxy 2671 reubida 2679 reubiia 2682 reueq1f 2691 reu5 2714 rmo5 2717 cbvreu 2727 cbvreuvw 2735 reuv 2782 reu2 2952 reu6 2953 reu3 2954 2reuswapdc 2968 cbvreucsf 3149 reuss2 3444 reuun2 3447 reupick 3448 reupick3 3449 reusn 3694 rabsneu 3696 reuhypd 4507 funcnv3 5321 feu 5443 dff4im 5711 f1ompt 5716 fsn 5737 riotauni 5887 riotacl2 5894 riota1 5899 riota1a 5900 riota2df 5901 snriota 5910 riotaund 5915 acexmid 5924 climreu 11479 divalgb 12107 uptx 14594 txcn 14595 dedekindicc 14953 bdcriota 15613 |
| Copyright terms: Public domain | W3C validator |