![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-reu | GIF version |
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 2457 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1352 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2148 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2026 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: nfreu1 2648 nfreudxy 2650 reubida 2658 reubiia 2661 reueq1f 2670 reu5 2689 rmo5 2692 cbvreu 2701 cbvreuvw 2709 reuv 2756 reu2 2925 reu6 2926 reu3 2927 2reuswapdc 2941 cbvreucsf 3121 reuss2 3415 reuun2 3418 reupick 3419 reupick3 3420 reusn 3663 rabsneu 3665 reuhypd 4471 funcnv3 5278 feu 5398 dff4im 5662 f1ompt 5667 fsn 5688 riotauni 5836 riotacl2 5843 riota1 5848 riota1a 5849 riota2df 5850 snriota 5859 riotaund 5864 acexmid 5873 climreu 11304 divalgb 11929 uptx 13744 txcn 13745 dedekindicc 14081 bdcriota 14605 |
Copyright terms: Public domain | W3C validator |