| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-reu | GIF version | ||
| Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wreu 2510 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1394 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2200 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | weu 2077 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: nfreu1 2703 nfreudxy 2705 reubida 2713 reubiia 2717 reueq1f 2726 reu5 2749 rmo5 2752 cbvreu 2763 cbvreuvw 2771 reuv 2819 reu2 2991 reu6 2992 reu3 2993 2reuswapdc 3007 cbvreucsf 3189 reuss2 3484 reuun2 3487 reupick 3488 reupick3 3489 reusn 3737 rabsneu 3739 reuhypd 4562 funcnv3 5383 feu 5510 dff4im 5783 f1ompt 5788 fsn 5809 riotauni 5967 riotacl2 5975 riota1 5980 riota1a 5981 riota2df 5982 snriota 5992 riotaund 5997 acexmid 6006 climreu 11816 divalgb 12444 uptx 14956 txcn 14957 dedekindicc 15315 bdcriota 16270 |
| Copyright terms: Public domain | W3C validator |