Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-reu | GIF version |
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 2455 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1352 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2146 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2024 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: nfreu1 2646 nfreudxy 2648 reubida 2656 reubiia 2659 reueq1f 2668 reu5 2687 rmo5 2690 cbvreu 2699 cbvreuvw 2707 reuv 2754 reu2 2923 reu6 2924 reu3 2925 2reuswapdc 2939 cbvreucsf 3119 reuss2 3413 reuun2 3416 reupick 3417 reupick3 3418 reusn 3660 rabsneu 3662 reuhypd 4465 funcnv3 5270 feu 5390 dff4im 5654 f1ompt 5659 fsn 5680 riotauni 5827 riotacl2 5834 riota1 5839 riota1a 5840 riota2df 5841 snriota 5850 riotaund 5855 acexmid 5864 climreu 11271 divalgb 11895 uptx 13325 txcn 13326 dedekindicc 13662 bdcriota 14175 |
Copyright terms: Public domain | W3C validator |