Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-reu | GIF version |
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 2446 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1342 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2136 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2014 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 104 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: nfreu1 2637 nfreudxy 2639 reubida 2647 reubiia 2650 reueq1f 2659 reu5 2678 rmo5 2681 cbvreu 2690 cbvreuvw 2698 reuv 2745 reu2 2914 reu6 2915 reu3 2916 2reuswapdc 2930 cbvreucsf 3109 reuss2 3402 reuun2 3405 reupick 3406 reupick3 3407 reusn 3647 rabsneu 3649 reuhypd 4449 funcnv3 5250 feu 5370 dff4im 5631 f1ompt 5636 fsn 5657 riotauni 5804 riotacl2 5811 riota1 5816 riota1a 5817 riota2df 5818 snriota 5827 riotaund 5832 acexmid 5841 climreu 11238 divalgb 11862 uptx 12914 txcn 12915 dedekindicc 13251 bdcriota 13765 |
Copyright terms: Public domain | W3C validator |