ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-reu GIF version

Definition df-reu 2495
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.)
Assertion
Ref Expression
df-reu (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))

Detailed syntax breakdown of Definition df-reu
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 vx . . 3 setvar 𝑥
3 cA . . 3 class 𝐴
41, 2, 3wreu 2490 . 2 wff ∃!𝑥𝐴 𝜑
52cv 1374 . . . . 5 class 𝑥
65, 3wcel 2180 . . . 4 wff 𝑥𝐴
76, 1wa 104 . . 3 wff (𝑥𝐴𝜑)
87, 2weu 2057 . 2 wff ∃!𝑥(𝑥𝐴𝜑)
94, 8wb 105 1 wff (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
Colors of variables: wff set class
This definition is referenced by:  nfreu1  2683  nfreudxy  2685  reubida  2693  reubiia  2697  reueq1f  2706  reu5  2729  rmo5  2732  cbvreu  2743  cbvreuvw  2751  reuv  2799  reu2  2971  reu6  2972  reu3  2973  2reuswapdc  2987  cbvreucsf  3169  reuss2  3464  reuun2  3467  reupick  3468  reupick3  3469  reusn  3717  rabsneu  3719  reuhypd  4539  funcnv3  5359  feu  5484  dff4im  5754  f1ompt  5759  fsn  5780  riotauni  5934  riotacl2  5942  riota1  5947  riota1a  5948  riota2df  5949  snriota  5959  riotaund  5964  acexmid  5973  climreu  11774  divalgb  12402  uptx  14913  txcn  14914  dedekindicc  15272  bdcriota  16156
  Copyright terms: Public domain W3C validator