| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-reu | GIF version | ||
| Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wreu 2490 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1374 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2180 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | weu 2057 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: nfreu1 2683 nfreudxy 2685 reubida 2693 reubiia 2697 reueq1f 2706 reu5 2729 rmo5 2732 cbvreu 2743 cbvreuvw 2751 reuv 2799 reu2 2971 reu6 2972 reu3 2973 2reuswapdc 2987 cbvreucsf 3169 reuss2 3464 reuun2 3467 reupick 3468 reupick3 3469 reusn 3717 rabsneu 3719 reuhypd 4539 funcnv3 5359 feu 5484 dff4im 5754 f1ompt 5759 fsn 5780 riotauni 5934 riotacl2 5942 riota1 5947 riota1a 5948 riota2df 5949 snriota 5959 riotaund 5964 acexmid 5973 climreu 11774 divalgb 12402 uptx 14913 txcn 14914 dedekindicc 15272 bdcriota 16156 |
| Copyright terms: Public domain | W3C validator |