| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-reu | GIF version | ||
| Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
| Ref | Expression |
|---|---|
| df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | wreu 2487 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
| 5 | 2 | cv 1372 | . . . . 5 class 𝑥 |
| 6 | 5, 3 | wcel 2177 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
| 8 | 7, 2 | weu 2055 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
| 9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
| Colors of variables: wff set class |
| This definition is referenced by: nfreu1 2679 nfreudxy 2681 reubida 2689 reubiia 2692 reueq1f 2701 reu5 2724 rmo5 2727 cbvreu 2737 cbvreuvw 2745 reuv 2792 reu2 2962 reu6 2963 reu3 2964 2reuswapdc 2978 cbvreucsf 3159 reuss2 3454 reuun2 3457 reupick 3458 reupick3 3459 reusn 3705 rabsneu 3707 reuhypd 4522 funcnv3 5341 feu 5465 dff4im 5733 f1ompt 5738 fsn 5759 riotauni 5913 riotacl2 5920 riota1 5925 riota1a 5926 riota2df 5927 snriota 5936 riotaund 5941 acexmid 5950 climreu 11652 divalgb 12280 uptx 14790 txcn 14791 dedekindicc 15149 bdcriota 15893 |
| Copyright terms: Public domain | W3C validator |