![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-reu | GIF version |
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 2474 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1363 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2164 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 104 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2042 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 105 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: nfreu1 2666 nfreudxy 2668 reubida 2676 reubiia 2679 reueq1f 2688 reu5 2711 rmo5 2714 cbvreu 2724 cbvreuvw 2732 reuv 2779 reu2 2948 reu6 2949 reu3 2950 2reuswapdc 2964 cbvreucsf 3145 reuss2 3439 reuun2 3442 reupick 3443 reupick3 3444 reusn 3689 rabsneu 3691 reuhypd 4502 funcnv3 5316 feu 5436 dff4im 5704 f1ompt 5709 fsn 5730 riotauni 5880 riotacl2 5887 riota1 5892 riota1a 5893 riota2df 5894 snriota 5903 riotaund 5908 acexmid 5917 climreu 11440 divalgb 12066 uptx 14442 txcn 14443 dedekindicc 14787 bdcriota 15375 |
Copyright terms: Public domain | W3C validator |