Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-reu | GIF version |
Description: Define restricted existential uniqueness. (Contributed by NM, 22-Nov-1994.) |
Ref | Expression |
---|---|
df-reu | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cA | . . 3 class 𝐴 | |
4 | 1, 2, 3 | wreu 2450 | . 2 wff ∃!𝑥 ∈ 𝐴 𝜑 |
5 | 2 | cv 1347 | . . . . 5 class 𝑥 |
6 | 5, 3 | wcel 2141 | . . . 4 wff 𝑥 ∈ 𝐴 |
7 | 6, 1 | wa 103 | . . 3 wff (𝑥 ∈ 𝐴 ∧ 𝜑) |
8 | 7, 2 | weu 2019 | . 2 wff ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) |
9 | 4, 8 | wb 104 | 1 wff (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
Colors of variables: wff set class |
This definition is referenced by: nfreu1 2641 nfreudxy 2643 reubida 2651 reubiia 2654 reueq1f 2663 reu5 2682 rmo5 2685 cbvreu 2694 cbvreuvw 2702 reuv 2749 reu2 2918 reu6 2919 reu3 2920 2reuswapdc 2934 cbvreucsf 3113 reuss2 3407 reuun2 3410 reupick 3411 reupick3 3412 reusn 3654 rabsneu 3656 reuhypd 4456 funcnv3 5260 feu 5380 dff4im 5642 f1ompt 5647 fsn 5668 riotauni 5815 riotacl2 5822 riota1 5827 riota1a 5828 riota2df 5829 snriota 5838 riotaund 5843 acexmid 5852 climreu 11260 divalgb 11884 uptx 13068 txcn 13069 dedekindicc 13405 bdcriota 13918 |
Copyright terms: Public domain | W3C validator |