HomeHome Intuitionistic Logic Explorer
Theorem List (p. 27 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremr19.27av 2601* Restricted version of one direction of Theorem 19.27 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.28av 2602* Restricted version of one direction of Theorem 19.28 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.)
((𝜑 ∧ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.29 2603 Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Andrew Salmon, 30-May-2011.)
((∀𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
 
Theoremr19.29r 2604 Variation of Theorem 19.29 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
((∃𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
 
Theoremralnex2 2605 Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 18-May-2023.)
(∀𝑥𝐴𝑦𝐵 ¬ 𝜑 ↔ ¬ ∃𝑥𝐴𝑦𝐵 𝜑)
 
Theoremr19.29af2 2606 A commonly used pattern based on r19.29 2603. (Contributed by Thierry Arnoux, 17-Dec-2017.)
𝑥𝜑    &   𝑥𝜒    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29af 2607* A commonly used pattern based on r19.29 2603. (Contributed by Thierry Arnoux, 29-Nov-2017.)
𝑥𝜑    &   (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29an 2608* A commonly used pattern based on r19.29 2603. (Contributed by Thierry Arnoux, 29-Dec-2019.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)       ((𝜑 ∧ ∃𝑥𝐴 𝜓) → 𝜒)
 
Theoremr19.29a 2609* A commonly used pattern based on r19.29 2603. (Contributed by Thierry Arnoux, 22-Nov-2017.)
(((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴 𝜓)       (𝜑𝜒)
 
Theoremr19.29d2r 2610 Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.)
(𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)       (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
 
Theoremr19.29vva 2611* A commonly used pattern based on r19.29 2603, version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017.)
((((𝜑𝑥𝐴) ∧ 𝑦𝐵) ∧ 𝜓) → 𝜒)    &   (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜓)       (𝜑𝜒)
 
Theoremr19.32r 2612 One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.)
𝑥𝜑       ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.30dc 2613 Restricted quantifier version of 19.30dc 1615. (Contributed by Scott Fenton, 25-Feb-2011.) (Proof shortened by Wolf Lammen, 18-Jun-2023.)
((∀𝑥𝐴 (𝜑𝜓) ∧ DECID𝑥𝐴 𝜓) → (∀𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
 
Theoremr19.32vr 2614* One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2615. (Contributed by Jim Kingdon, 19-Aug-2018.)
((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 
Theoremr19.32vdc 2615* Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, where 𝜑 is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
(DECID 𝜑 → (∀𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∨ ∀𝑥𝐴 𝜓)))
 
Theoremr19.35-1 2616 Restricted quantifier version of 19.35-1 1612. (Contributed by Jim Kingdon, 4-Jun-2018.)
(∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.36av 2617* One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. In classical logic, the converse would hold if 𝐴 has at least one element, but in intuitionistic logic, that is not a sufficient condition. (Contributed by NM, 22-Oct-2003.)
(∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑𝜓))
 
Theoremr19.37 2618 Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. In classical logic the converse would hold if 𝐴 has at least one element, but that is not sufficient in intuitionistic logic. (Contributed by FL, 13-May-2012.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑥𝜑       (∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.37av 2619* Restricted version of one direction of Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 → ∃𝑥𝐴 𝜓))
 
Theoremr19.40 2620 Restricted quantifier version of Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 𝜓))
 
Theoremr19.41 2621 Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 1-Nov-2010.)
𝑥𝜓       (∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.41v 2622* Restricted quantifier version of Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 17-Dec-2003.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.42v 2623* Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝐴 𝜓))
 
Theoremr19.43 2624 Restricted version of Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.) (Proof rewritten by Jim Kingdon, 5-Jun-2018.)
(∃𝑥𝐴 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∨ ∃𝑥𝐴 𝜓))
 
Theoremr19.44av 2625* One direction of a restricted quantifier version of Theorem 19.44 of [Margaris] p. 90. The other direction doesn't hold when 𝐴 is empty. (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (∃𝑥𝐴 𝜑𝜓))
 
Theoremr19.45av 2626* Restricted version of one direction of Theorem 19.45 of [Margaris] p. 90. (The other direction doesn't hold when 𝐴 is empty.) (Contributed by NM, 2-Apr-2004.)
(∃𝑥𝐴 (𝜑𝜓) → (𝜑 ∨ ∃𝑥𝐴 𝜓))
 
Theoremralcomf 2627* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcomf 2628* Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.)
𝑦𝐴    &   𝑥𝐵       (∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
 
Theoremralcom 2629* Commutation of restricted quantifiers. (Contributed by NM, 13-Oct-1999.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcom 2630* Commutation of restricted quantifiers. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
(∃𝑥𝐴𝑦𝐵 𝜑 ↔ ∃𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexcom13 2631* Swap 1st and 3rd restricted existential quantifiers. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 𝜑 ↔ ∃𝑧𝐶𝑦𝐵𝑥𝐴 𝜑)
 
Theoremrexrot4 2632* Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶𝑤𝐷 𝜑 ↔ ∃𝑧𝐶𝑤𝐷𝑥𝐴𝑦𝐵 𝜑)
 
Theoremralcom3 2633 A commutative law for restricted quantifiers that swaps the domain of the restriction. (Contributed by NM, 22-Feb-2004.)
(∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥𝐵 (𝑥𝐴𝜑))
 
Theoremreean 2634* Rearrange existential quantifiers. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Andrew Salmon, 30-May-2011.)
𝑦𝜑    &   𝑥𝜓       (∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
 
Theoremreeanv 2635* Rearrange existential quantifiers. (Contributed by NM, 9-May-1999.)
(∃𝑥𝐴𝑦𝐵 (𝜑𝜓) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓))
 
Theorem3reeanv 2636* Rearrange three existential quantifiers. (Contributed by Jeff Madsen, 11-Jun-2010.)
(∃𝑥𝐴𝑦𝐵𝑧𝐶 (𝜑𝜓𝜒) ↔ (∃𝑥𝐴 𝜑 ∧ ∃𝑦𝐵 𝜓 ∧ ∃𝑧𝐶 𝜒))
 
Theoremnfreu1 2637 𝑥 is not free in ∃!𝑥𝐴𝜑. (Contributed by NM, 19-Mar-1997.)
𝑥∃!𝑥𝐴 𝜑
 
Theoremnfrmo1 2638 𝑥 is not free in ∃*𝑥𝐴𝜑. (Contributed by NM, 16-Jun-2017.)
𝑥∃*𝑥𝐴 𝜑
 
Theoremnfreudxy 2639* Not-free deduction for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑦𝜑    &   (𝜑𝑥𝐴)    &   (𝜑 → Ⅎ𝑥𝜓)       (𝜑 → Ⅎ𝑥∃!𝑦𝐴 𝜓)
 
Theoremnfreuxy 2640* Not-free for restricted uniqueness. This is a version where 𝑥 and 𝑦 are distinct. (Contributed by Jim Kingdon, 6-Jun-2018.)
𝑥𝐴    &   𝑥𝜑       𝑥∃!𝑦𝐴 𝜑
 
Theoremrabid 2641 An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by NM, 9-Oct-2003.)
(𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
 
Theoremrabid2 2642* An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
(𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
 
Theoremrabbi 2643 Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2714. (Contributed by NM, 25-Nov-2013.)
(∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 
Theoremrabswap 2644 Swap with a membership relation in a restricted class abstraction. (Contributed by NM, 4-Jul-2005.)
{𝑥𝐴𝑥𝐵} = {𝑥𝐵𝑥𝐴}
 
Theoremnfrab1 2645 The abstraction variable in a restricted class abstraction isn't free. (Contributed by NM, 19-Mar-1997.)
𝑥{𝑥𝐴𝜑}
 
Theoremnfrabxy 2646* A variable not free in a wff remains so in a restricted class abstraction. (Contributed by Jim Kingdon, 19-Jul-2018.)
𝑥𝜑    &   𝑥𝐴       𝑥{𝑦𝐴𝜑}
 
Theoremreubida 2647 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidva 2648* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 13-Nov-2004.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubidv 2649* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 17-Oct-1996.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃!𝑥𝐴 𝜓 ↔ ∃!𝑥𝐴 𝜒))
 
Theoremreubiia 2650 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 14-Nov-2004.)
(𝑥𝐴 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremreubii 2651 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 22-Oct-1999.)
(𝜑𝜓)       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐴 𝜓)
 
Theoremrmobida 2652 Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
𝑥𝜑    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidva 2653* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobidv 2654* Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
(𝜑 → (𝜓𝜒))       (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
 
Theoremrmobiia 2655 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝑥𝐴 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremrmobii 2656 Formula-building rule for restricted existential quantifier (inference form). (Contributed by NM, 16-Jun-2017.)
(𝜑𝜓)       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
 
Theoremraleqf 2657 Equality theorem for restricted universal quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 
Theoremrexeqf 2658 Equality theorem for restricted existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 9-Oct-2003.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
 
Theoremreueq1f 2659 Equality theorem for restricted unique existential quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 5-Apr-2004.) (Revised by Andrew Salmon, 11-Jul-2011.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
 
Theoremrmoeq1f 2660 Equality theorem for restricted at-most-one quantifier, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
 
Theoremraleq 2661* Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
(𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑))
 
Theoremrexeq 2662* Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995.)
(𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑))
 
Theoremreueq1 2663* Equality theorem for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
(𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜑))
 
Theoremrmoeq1 2664* Equality theorem for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜑))
 
Theoremraleqi 2665* Equality inference for restricted universal qualifier. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐵       (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜑)
 
Theoremrexeqi 2666* Equality inference for restricted existential qualifier. (Contributed by Mario Carneiro, 23-Apr-2015.)
𝐴 = 𝐵       (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜑)
 
Theoremraleqdv 2667* Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005.)
(𝜑𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
 
Theoremrexeqdv 2668* Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007.)
(𝜑𝐴 = 𝐵)       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
 
Theoremraleqbi1dv 2669* Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓))
 
Theoremrexeqbi1dv 2670* Equality deduction for restricted existential quantifier. (Contributed by NM, 18-Mar-1997.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 𝜓))
 
Theoremreueqd 2671* Equality deduction for restricted unique existential quantifier. (Contributed by NM, 5-Apr-2004.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥𝐵 𝜓))
 
Theoremrmoeqd 2672* Equality deduction for restricted at-most-one quantifier. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝐴 = 𝐵 → (𝜑𝜓))       (𝐴 = 𝐵 → (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐵 𝜓))
 
Theoremraleqbidv 2673* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidv 2674* Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremraleqbidva 2675* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
 
Theoremrexeqbidva 2676* Equality deduction for restricted universal quantifier. (Contributed by Mario Carneiro, 5-Jan-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
 
Theoremmormo 2677 Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremreu5 2678 Restricted uniqueness in terms of "at most one". (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 ∧ ∃*𝑥𝐴 𝜑))
 
Theoremreurex 2679 Restricted unique existence implies restricted existence. (Contributed by NM, 19-Aug-1999.)
(∃!𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜑)
 
Theoremreurmo 2680 Restricted existential uniqueness implies restricted "at most one." (Contributed by NM, 16-Jun-2017.)
(∃!𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremrmo5 2681 Restricted "at most one" in term of uniqueness. (Contributed by NM, 16-Jun-2017.)
(∃*𝑥𝐴 𝜑 ↔ (∃𝑥𝐴 𝜑 → ∃!𝑥𝐴 𝜑))
 
Theoremnrexrmo 2682 Nonexistence implies restricted "at most one". (Contributed by NM, 17-Jun-2017.)
(¬ ∃𝑥𝐴 𝜑 → ∃*𝑥𝐴 𝜑)
 
Theoremcbvralfw 2683* Rule used to change bound variables, using implicit substitution. Version of cbvralf 2685 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1495 and ax-bndl 1497 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by Gino Giotto, 23-May-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexfw 2684* Rule used to change bound variables, using implicit substitution. Version of cbvrexf 2686 with a disjoint variable condition, which does not require ax-13 2138. (Contributed by FL, 27-Apr-2008.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvralf 2685 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 7-Mar-2004.) (Revised by Mario Carneiro, 9-Oct-2016.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexf 2686 Rule used to change bound variables, using implicit substitution. (Contributed by FL, 27-Apr-2008.) (Revised by Mario Carneiro, 9-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvralw 2687* Rule used to change bound variables, using implicit substitution. Version of cbvral 2688 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1495 and ax-bndl 1497 in the proof. (Contributed by NM, 31-Jul-2003.) (Revised by Gino Giotto, 10-Jan-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvral 2688* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrex 2689* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 31-Jul-2003.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreu 2690* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmo 2691* Change the bound variable of restricted "at most one" using implicit substitution. (Contributed by NM, 16-Jun-2017.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralv 2692* Change the bound variable of a restricted universal quantifier using implicit substitution. (Contributed by NM, 28-Jan-1997.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexv 2693* Change the bound variable of a restricted existential quantifier using implicit substitution. (Contributed by NM, 2-Jun-1998.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuv 2694* Change the bound variable of a restricted unique existential quantifier using implicit substitution. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvrmov 2695* Change the bound variable of a restricted at-most-one quantifier using implicit substitution. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝐴 𝜑 ↔ ∃*𝑦𝐴 𝜓)
 
Theoremcbvralvw 2696* Version of cbvralv 2692 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐴 𝜓)
 
Theoremcbvrexvw 2697* Version of cbvrexv 2693 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐴 𝜓)
 
Theoremcbvreuvw 2698* Version of cbvreuv 2694 with a disjoint variable condition. (Contributed by Gino Giotto, 10-Jan-2024.) Reduce axiom usage. (Revised by Gino Giotto, 25-Aug-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
 
Theoremcbvraldva2 2699* Rule used to change the bound variable in a restricted universal quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑦𝐵 𝜒))
 
Theoremcbvrexdva2 2700* Rule used to change the bound variable in a restricted existential quantifier with implicit substitution which also changes the quantifier domain. Deduction form. (Contributed by David Moews, 1-May-2017.)
((𝜑𝑥 = 𝑦) → (𝜓𝜒))    &   ((𝜑𝑥 = 𝑦) → 𝐴 = 𝐵)       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >