| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > cbvralfw | GIF version | ||
| Description: Rule used to change bound variables, using implicit substitution. Version of cbvralf 2730 with a disjoint variable condition. Although we don't do so yet, we expect this disjoint variable condition will allow us to remove reliance on ax-i12 1530 and ax-bndl 1532 in the proof. (Contributed by NM, 7-Mar-2004.) (Revised by GG, 23-May-2024.) |
| Ref | Expression |
|---|---|
| cbvralfw.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvralfw.2 | ⊢ Ⅎ𝑦𝐴 |
| cbvralfw.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvralfw.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvralfw.5 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvralfw | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralfw.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 2 | 1 | nfcri 2342 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 3 | cbvralfw.3 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 2, 3 | nfim 1595 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 → 𝜑) |
| 5 | cbvralfw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2342 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvralfw.4 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 8 | 6, 7 | nfim 1595 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓) |
| 9 | eleq1w 2266 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | cbvralfw.5 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 11 | 9, 10 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 → 𝜑) ↔ (𝑦 ∈ 𝐴 → 𝜓))) |
| 12 | 4, 8, 11 | cbvalv1 1774 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
| 13 | df-ral 2489 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 14 | df-ral 2489 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
| 15 | 12, 13, 14 | 3bitr4i 212 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 Ⅎwnf 1483 ∈ wcel 2176 Ⅎwnfc 2335 ∀wral 2484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 |
| This theorem is referenced by: cbvralw 2732 nnwofdc 12359 |
| Copyright terms: Public domain | W3C validator |