| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm2.36 | GIF version | ||
| Description: Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.) |
| Ref | Expression |
|---|---|
| pm2.36 | ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm1.4 728 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | pm2.38 804 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜓 ∨ 𝜑) → (𝜒 ∨ 𝜑))) | |
| 3 | 1, 2 | syl5 32 | 1 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: stdcndc 846 |
| Copyright terms: Public domain | W3C validator |