Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.36 | GIF version |
Description: Theorem *2.36 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.) |
Ref | Expression |
---|---|
pm2.36 | ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 722 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
2 | pm2.38 798 | . 2 ⊢ ((𝜓 → 𝜒) → ((𝜓 ∨ 𝜑) → (𝜒 ∨ 𝜑))) | |
3 | 1, 2 | syl5 32 | 1 ⊢ ((𝜓 → 𝜒) → ((𝜑 ∨ 𝜓) → (𝜒 ∨ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: stdcndc 840 |
Copyright terms: Public domain | W3C validator |