ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm1.4 GIF version

Theorem pm1.4 722
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.)
Assertion
Ref Expression
pm1.4 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 706 . 2 (𝜑 → (𝜓𝜑))
2 orc 707 . 2 (𝜓 → (𝜓𝜑))
31, 2jaoi 711 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  orcom  723  orcoms  725  pm2.3  770  pm2.36  799  pm2.37  800  pm2.8  805  dveeq2or  1809  prneimg  3761
  Copyright terms: Public domain W3C validator