ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm1.4 GIF version

Theorem pm1.4 727
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.)
Assertion
Ref Expression
pm1.4 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 711 . 2 (𝜑 → (𝜓𝜑))
2 orc 712 . 2 (𝜓 → (𝜓𝜑))
31, 2jaoi 716 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orcom  728  orcoms  730  pm2.3  775  pm2.36  804  pm2.37  805  pm2.8  810  dveeq2or  1814  prneimg  3770
  Copyright terms: Public domain W3C validator