| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pm1.4 | GIF version | ||
| Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.) |
| Ref | Expression |
|---|---|
| pm1.4 | ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olc 716 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
| 2 | orc 717 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
| 3 | 1, 2 | jaoi 721 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orcom 733 orcoms 735 pm2.3 780 pm2.36 809 pm2.37 810 pm2.8 815 dveeq2or 1862 prneimg 3851 |
| Copyright terms: Public domain | W3C validator |