Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm1.4 | GIF version |
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.) |
Ref | Expression |
---|---|
pm1.4 | ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 701 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜑)) | |
2 | orc 702 | . 2 ⊢ (𝜓 → (𝜓 ∨ 𝜑)) | |
3 | 1, 2 | jaoi 706 | 1 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orcom 718 orcoms 720 pm2.3 765 pm2.36 794 pm2.37 795 pm2.8 800 dveeq2or 1804 prneimg 3754 |
Copyright terms: Public domain | W3C validator |