ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm1.4 GIF version

Theorem pm1.4 729
Description: Axiom *1.4 of [WhiteheadRussell] p. 96. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 15-Nov-2012.)
Assertion
Ref Expression
pm1.4 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem pm1.4
StepHypRef Expression
1 olc 713 . 2 (𝜑 → (𝜓𝜑))
2 orc 714 . 2 (𝜓 → (𝜓𝜑))
31, 2jaoi 718 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orcom  730  orcoms  732  pm2.3  777  pm2.36  806  pm2.37  807  pm2.8  812  dveeq2or  1840  prneimg  3817
  Copyright terms: Public domain W3C validator