![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm2.38 | GIF version |
Description: Theorem *2.38 of [WhiteheadRussell] p. 105. (Contributed by NM, 6-Mar-2008.) |
Ref | Expression |
---|---|
pm2.38 | ⊢ ((𝜓 → 𝜒) → ((𝜓 ∨ 𝜑) → (𝜒 ∨ 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜒)) | |
2 | 1 | orim1d 739 | 1 ⊢ ((𝜓 → 𝜒) → ((𝜓 ∨ 𝜑) → (𝜒 ∨ 𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 667 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.36 756 pm2.37 757 |
Copyright terms: Public domain | W3C validator |