Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > stdcndc | GIF version |
Description: A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.) |
Ref | Expression |
---|---|
stdcndc | ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-stab 821 | . . . 4 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
2 | df-dc 825 | . . . 4 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
3 | pm2.36 794 | . . . . 5 ⊢ ((¬ ¬ 𝜑 → 𝜑) → ((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑))) | |
4 | 3 | imp 123 | . . . 4 ⊢ (((¬ ¬ 𝜑 → 𝜑) ∧ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) |
5 | 1, 2, 4 | syl2anb 289 | . . 3 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) |
6 | df-dc 825 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
7 | 5, 6 | sylibr 133 | . 2 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) → DECID 𝜑) |
8 | dcstab 834 | . . 3 ⊢ (DECID 𝜑 → STAB 𝜑) | |
9 | dcn 832 | . . 3 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
10 | 8, 9 | jca 304 | . 2 ⊢ (DECID 𝜑 → (STAB 𝜑 ∧ DECID ¬ 𝜑)) |
11 | 7, 10 | impbii 125 | 1 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 698 STAB wstab 820 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: stdcn 837 |
Copyright terms: Public domain | W3C validator |