ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stdcndc GIF version

Theorem stdcndc 835
Description: A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.)
Assertion
Ref Expression
stdcndc ((STAB 𝜑DECID ¬ 𝜑) ↔ DECID 𝜑)

Proof of Theorem stdcndc
StepHypRef Expression
1 df-stab 821 . . . 4 (STAB 𝜑 ↔ (¬ ¬ 𝜑𝜑))
2 df-dc 825 . . . 4 (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑))
3 pm2.36 794 . . . . 5 ((¬ ¬ 𝜑𝜑) → ((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)))
43imp 123 . . . 4 (((¬ ¬ 𝜑𝜑) ∧ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑))
51, 2, 4syl2anb 289 . . 3 ((STAB 𝜑DECID ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑))
6 df-dc 825 . . 3 (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑))
75, 6sylibr 133 . 2 ((STAB 𝜑DECID ¬ 𝜑) → DECID 𝜑)
8 dcstab 834 . . 3 (DECID 𝜑STAB 𝜑)
9 dcn 832 . . 3 (DECID 𝜑DECID ¬ 𝜑)
108, 9jca 304 . 2 (DECID 𝜑 → (STAB 𝜑DECID ¬ 𝜑))
117, 10impbii 125 1 ((STAB 𝜑DECID ¬ 𝜑) ↔ DECID 𝜑)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  STAB wstab 820  DECID wdc 824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825
This theorem is referenced by:  stdcn  837
  Copyright terms: Public domain W3C validator