| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > stdcndc | GIF version | ||
| Description: A formula is decidable if and only if its negation is decidable and it is stable (that is, it is testable and stable). (Contributed by David A. Wheeler, 13-Aug-2018.) (Proof shortened by BJ, 28-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| stdcndc | ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-stab 832 | . . . 4 ⊢ (STAB 𝜑 ↔ (¬ ¬ 𝜑 → 𝜑)) | |
| 2 | df-dc 836 | . . . 4 ⊢ (DECID ¬ 𝜑 ↔ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) | |
| 3 | pm2.36 805 | . . . . 5 ⊢ ((¬ ¬ 𝜑 → 𝜑) → ((¬ 𝜑 ∨ ¬ ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑))) | |
| 4 | 3 | imp 124 | . . . 4 ⊢ (((¬ ¬ 𝜑 → 𝜑) ∧ (¬ 𝜑 ∨ ¬ ¬ 𝜑)) → (𝜑 ∨ ¬ 𝜑)) | 
| 5 | 1, 2, 4 | syl2anb 291 | . . 3 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) → (𝜑 ∨ ¬ 𝜑)) | 
| 6 | df-dc 836 | . . 3 ⊢ (DECID 𝜑 ↔ (𝜑 ∨ ¬ 𝜑)) | |
| 7 | 5, 6 | sylibr 134 | . 2 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) → DECID 𝜑) | 
| 8 | dcstab 845 | . . 3 ⊢ (DECID 𝜑 → STAB 𝜑) | |
| 9 | dcn 843 | . . 3 ⊢ (DECID 𝜑 → DECID ¬ 𝜑) | |
| 10 | 8, 9 | jca 306 | . 2 ⊢ (DECID 𝜑 → (STAB 𝜑 ∧ DECID ¬ 𝜑)) | 
| 11 | 7, 10 | impbii 126 | 1 ⊢ ((STAB 𝜑 ∧ DECID ¬ 𝜑) ↔ DECID 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 STAB wstab 831 DECID wdc 835 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 | 
| This theorem is referenced by: stdcn 848 | 
| Copyright terms: Public domain | W3C validator |