Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pm2.8 | GIF version |
Description: Theorem *2.8 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
pm2.8 | ⊢ ((𝜑 ∨ 𝜓) → ((¬ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm1.4 722 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
2 | 1 | ord 719 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (¬ 𝜓 → 𝜑)) |
3 | 2 | orim1d 782 | 1 ⊢ ((𝜑 ∨ 𝜓) → ((¬ 𝜓 ∨ 𝜒) → (𝜑 ∨ 𝜒))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |