![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord | GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | pm2.53 723 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1523 swopo 4338 sotritrieq 4357 suc11g 4590 ordsoexmid 4595 nnsuc 4649 sotri2 5064 nnsucsssuc 6547 nntri2 6549 nntri1 6551 nnsseleq 6556 djulclb 7116 0ct 7168 exmidomniim 7202 omniwomnimkv 7228 elni2 7376 nlt1pig 7403 nngt1ne1 9019 zleloe 9367 zapne 9394 nneo 9423 zeo2 9426 fzocatel 10269 seqf1oglem1 10593 seqf1oglem2 10594 dfphi2 12361 prmdiv 12376 odzdvds 12386 pc2dvds 12471 fldivp1 12489 pcfac 12491 1arith 12508 4sqlem10 12528 plyaddlem1 14926 plymullem1 14927 gausslemma2dlem4 15221 lgseisenlem1 15227 bj-peano4 15517 |
Copyright terms: Public domain | W3C validator |