| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 723 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1526 swopo 4342 sotritrieq 4361 suc11g 4594 ordsoexmid 4599 nnsuc 4653 sotri2 5068 nnsucsssuc 6559 nntri2 6561 nntri1 6563 nnsseleq 6568 djulclb 7130 0ct 7182 exmidomniim 7216 omniwomnimkv 7242 elni2 7400 nlt1pig 7427 nngt1ne1 9044 zleloe 9392 zapne 9419 nneo 9448 zeo2 9451 fzocatel 10294 seqf1oglem1 10630 seqf1oglem2 10631 bitsinv1lem 12145 dfphi2 12415 prmdiv 12430 odzdvds 12441 pc2dvds 12526 fldivp1 12544 pcfac 12546 1arith 12563 4sqlem10 12583 plyaddlem1 15091 plymullem1 15092 gausslemma2dlem4 15413 lgseisenlem1 15419 bj-peano4 15709 |
| Copyright terms: Public domain | W3C validator |