![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord | GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | pm2.53 723 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1523 swopo 4337 sotritrieq 4356 suc11g 4589 ordsoexmid 4594 nnsuc 4648 sotri2 5063 nnsucsssuc 6545 nntri2 6547 nntri1 6549 nnsseleq 6554 djulclb 7114 0ct 7166 exmidomniim 7200 omniwomnimkv 7226 elni2 7374 nlt1pig 7401 nngt1ne1 9017 zleloe 9364 zapne 9391 nneo 9420 zeo2 9423 fzocatel 10266 seqf1oglem1 10590 seqf1oglem2 10591 dfphi2 12358 prmdiv 12373 odzdvds 12383 pc2dvds 12468 fldivp1 12486 pcfac 12488 1arith 12505 4sqlem10 12525 plyaddlem1 14893 plymullem1 14894 gausslemma2dlem4 15180 lgseisenlem1 15186 bj-peano4 15447 |
Copyright terms: Public domain | W3C validator |