Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ord | GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | pm2.53 712 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.8 800 orcanai 918 ax12 1500 swopo 4283 sotritrieq 4302 suc11g 4533 ordsoexmid 4538 nnsuc 4592 sotri2 5000 nnsucsssuc 6456 nntri2 6458 nntri1 6460 nnsseleq 6465 djulclb 7016 0ct 7068 exmidomniim 7101 omniwomnimkv 7127 elni2 7251 nlt1pig 7278 nngt1ne1 8888 zleloe 9234 zapne 9261 nneo 9290 zeo2 9293 fzocatel 10130 dfphi2 12148 prmdiv 12163 odzdvds 12173 pc2dvds 12257 fldivp1 12274 pcfac 12276 1arith 12293 4sqlem10 12313 bj-peano4 13797 |
Copyright terms: Public domain | W3C validator |