| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 724 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 812 orcanai 930 ax12 1535 swopo 4353 sotritrieq 4372 suc11g 4605 ordsoexmid 4610 nnsuc 4664 sotri2 5080 nnsucsssuc 6578 nntri2 6580 nntri1 6582 nnsseleq 6587 djulclb 7157 0ct 7209 exmidomniim 7243 omniwomnimkv 7269 elni2 7427 nlt1pig 7454 nngt1ne1 9071 zleloe 9419 zapne 9447 nneo 9476 zeo2 9479 fzocatel 10328 seqf1oglem1 10664 seqf1oglem2 10665 bitsinv1lem 12272 dfphi2 12542 prmdiv 12557 odzdvds 12568 pc2dvds 12653 fldivp1 12671 pcfac 12673 1arith 12690 4sqlem10 12710 plyaddlem1 15219 plymullem1 15220 gausslemma2dlem4 15541 lgseisenlem1 15547 bj-peano4 15891 |
| Copyright terms: Public domain | W3C validator |