![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ord | GIF version |
Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
Ref | Expression |
---|---|
ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
2 | pm2.53 679 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 667 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 583 ax-io 668 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm2.8 762 orcanai 878 ax-12 1454 swopo 4157 sotritrieq 4176 suc11g 4401 ordsoexmid 4406 nnsuc 4458 sotri2 4862 nnsucsssuc 6293 nntri2 6295 nntri1 6297 nnsseleq 6302 djulclb 6827 0ct 6869 exmidomniim 6884 elni2 6970 nlt1pig 6997 nngt1ne1 8555 zleloe 8895 zapne 8919 nneo 8948 zeo2 8951 fzocatel 9759 dfphi2 11639 bj-peano4 12574 |
Copyright terms: Public domain | W3C validator |