| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 724 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 812 orcanai 930 ax12 1536 swopo 4371 sotritrieq 4390 suc11g 4623 ordsoexmid 4628 nnsuc 4682 sotri2 5099 nnsucsssuc 6601 nntri2 6603 nntri1 6605 nnsseleq 6610 djulclb 7183 0ct 7235 exmidomniim 7269 omniwomnimkv 7295 elni2 7462 nlt1pig 7489 nngt1ne1 9106 zleloe 9454 zapne 9482 nneo 9511 zeo2 9514 fzocatel 10365 seqf1oglem1 10701 seqf1oglem2 10702 bitsinv1lem 12387 dfphi2 12657 prmdiv 12672 odzdvds 12683 pc2dvds 12768 fldivp1 12786 pcfac 12788 1arith 12805 4sqlem10 12825 plyaddlem1 15334 plymullem1 15335 gausslemma2dlem4 15656 lgseisenlem1 15662 bj-peano4 16090 |
| Copyright terms: Public domain | W3C validator |