| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 727 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 713 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 815 orcanai 933 ax12 1558 swopo 4396 sotritrieq 4415 suc11g 4648 ordsoexmid 4653 nnsuc 4707 sotri2 5125 nnsucsssuc 6636 nntri2 6638 nntri1 6640 nnsseleq 6645 djulclb 7218 0ct 7270 exmidomniim 7304 omniwomnimkv 7330 elni2 7497 nlt1pig 7524 nngt1ne1 9141 zleloe 9489 zapne 9517 nneo 9546 zeo2 9549 fzocatel 10400 seqf1oglem1 10736 seqf1oglem2 10737 bitsinv1lem 12467 dfphi2 12737 prmdiv 12752 odzdvds 12763 pc2dvds 12848 fldivp1 12866 pcfac 12868 1arith 12885 4sqlem10 12905 plyaddlem1 15415 plymullem1 15416 gausslemma2dlem4 15737 lgseisenlem1 15743 bj-peano4 16276 |
| Copyright terms: Public domain | W3C validator |