| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 723 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1534 swopo 4352 sotritrieq 4371 suc11g 4604 ordsoexmid 4609 nnsuc 4663 sotri2 5079 nnsucsssuc 6577 nntri2 6579 nntri1 6581 nnsseleq 6586 djulclb 7156 0ct 7208 exmidomniim 7242 omniwomnimkv 7268 elni2 7426 nlt1pig 7453 nngt1ne1 9070 zleloe 9418 zapne 9446 nneo 9475 zeo2 9478 fzocatel 10326 seqf1oglem1 10662 seqf1oglem2 10663 bitsinv1lem 12243 dfphi2 12513 prmdiv 12528 odzdvds 12539 pc2dvds 12624 fldivp1 12642 pcfac 12644 1arith 12661 4sqlem10 12681 plyaddlem1 15190 plymullem1 15191 gausslemma2dlem4 15512 lgseisenlem1 15518 bj-peano4 15853 |
| Copyright terms: Public domain | W3C validator |