| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ord | GIF version | ||
| Description: Deduce implication from disjunction. (Contributed by NM, 18-May-1994.) (Revised by Mario Carneiro, 31-Jan-2015.) |
| Ref | Expression |
|---|---|
| ord.1 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
| Ref | Expression |
|---|---|
| ord | ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ord.1 | . 2 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
| 2 | pm2.53 723 | . 2 ⊢ ((𝜓 ∨ 𝜒) → (¬ 𝜓 → 𝜒)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (¬ 𝜓 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm2.8 811 orcanai 929 ax12 1526 swopo 4342 sotritrieq 4361 suc11g 4594 ordsoexmid 4599 nnsuc 4653 sotri2 5068 nnsucsssuc 6559 nntri2 6561 nntri1 6563 nnsseleq 6568 djulclb 7130 0ct 7182 exmidomniim 7216 omniwomnimkv 7242 elni2 7398 nlt1pig 7425 nngt1ne1 9042 zleloe 9390 zapne 9417 nneo 9446 zeo2 9449 fzocatel 10292 seqf1oglem1 10628 seqf1oglem2 10629 bitsinv1lem 12143 dfphi2 12413 prmdiv 12428 odzdvds 12439 pc2dvds 12524 fldivp1 12542 pcfac 12544 1arith 12561 4sqlem10 12581 plyaddlem1 15067 plymullem1 15068 gausslemma2dlem4 15389 lgseisenlem1 15395 bj-peano4 15685 |
| Copyright terms: Public domain | W3C validator |